
The Chain Rule

Problem 1 (jS, Exercises 14.5.53). If z = f(x, y), where x = r cos θ and y = r sin θ,
show that
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Problem 2 (jS, Exercises 14.5.54). Suppose that z = f(x, y), where x = g(s, t) and
y = h(s, t). Show that
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Problem 3 (UC Berkeley midterm). Assume that the two equations f(x, y, z) = 0
and g(x, y, z) = 0 together implicitly define y and z as functions of x. Find formulas
for y′ = dy/dx and z′ = dz/dx in terms of the partial derivatives of f and g. [Hint:
Use chain rule with respect to x to differentiate both equations f(x, y(x), z(x)) = 0 and
g(x, y(x), z(x)) = 0 and then solve the 2× 2 remaining system.]
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