The Chain Rule

Problem 1 (jS, Exercises 14.5.53). If $z=f(x, y)$, where $x=r \cos \theta$ and $y=r \sin \theta$, show that

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial^{2} z}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} z}{\partial \theta^{2}}+\frac{1}{r} \frac{\partial z}{\partial r}
$$

Problem 2 (jS, Exercises 14.5.54). Suppose that $z=f(x, y)$, where $x=g(s, t)$ and $y=h(s, t)$. Show that

$$
\frac{\partial^{2} z}{\partial t^{2}}=\frac{\partial^{2} z}{\partial x^{2}}\left(\frac{\partial x}{\partial t}\right)^{2}+2 \frac{\partial^{2} z}{\partial x \partial y} \frac{\partial x}{\partial t} \frac{\partial y}{\partial t}+\frac{\partial^{2} z}{\partial y^{2}}\left(\frac{\partial y}{\partial t}\right)^{2}+\frac{\partial z}{\partial x} \frac{\partial^{2} x}{\partial t^{2}}+\frac{\partial z}{\partial y} \frac{\partial^{2} y}{\partial t^{2}}
$$

Problem 3 (UC Berkeley midterm). Assume that the two equations $f(x, y, z)=0$ and $g(x, y, z)=0$ together implicitly define y and z as functions of x. Find formulas for $y^{\prime}=d y / d x$ and $z^{\prime}=d z / d x$ in terms of the partial derivatives of f and g. [Hint: Use chain rule with respect to x to differentiate both equations $f(x, y(x), z(x))=0$ and $g(x, y(x), z(x))=0$ and then solve the 2×2 remaining system.]

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.

