Partial Derivatives

Problem 1. Is the following function continuous.

$$
f(x, y)=\left\{\begin{array}{ll}
y \sin \left(\frac{1}{x^{2}+y^{2}}\right) & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array} .\right.
$$

Find the partial derivatives of f at $(0,0)$.
Problem 2. Find the partial derivatives at $(0,0)$ of the following function:

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Is the function f continuous at $(0,0)$. [Answer: $f_{x}(0,0)=f_{y}(0,0)=0$, but f is not continuous.]
Problem 3 (Stewart, Exercise 14.3.101). Use Clairaut's Theorem to show that if the third-order partial derivatives of f are continuous, then $f_{x y y}=f_{y x y}=f_{y y x}$.
Problem 4 (Stewart, Exercise 14.3.103). If

$$
f(x, y)=x\left(x^{2}+y^{2}\right)^{-3 / 2} e^{\sin \left(x^{2} y\right)}
$$

find $f_{x}(1,0)$. [Hint: Can we simplify the function evaluating on certain constant one of the variables?]

Problem 5. If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable and constant on the line $x=y$, argue that $f_{x}(t, t)=-f_{y}(t, t)$ for all $t \in \mathbb{R}$.

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.

