PARTIAL DERIVATIVES

Problem 1. Is the following function continuous.

$$f(x,y) = \begin{cases} y \sin\left(\frac{1}{x^2 + y^2}\right) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Find the partial derivatives of f at (0,0).

Problem 2. Find the partial derivatives at (0,0) of the following function:

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Is the function f continuous at (0,0). [Answer: $f_x(0,0) = f_y(0,0) = 0$, but f is not continuous.]

Problem 3 (Stewart, Exercise 14.3.101). Use Clairaut's Theorem to show that if the third-order partial derivatives of f are continuous, then $f_{xyy} = f_{yxy} = f_{yyx}$.

Problem 4 (Stewart, Exercise 14.3.103). If

$$f(x,y) = x(x^2 + y^2)^{-3/2}e^{\sin(x^2y)},$$

find $f_x(1,0)$. [Hint: Can we simplify the function evaluating on certain constant one of the variables?]

Problem 5. If $f : \mathbb{R}^2 \to \mathbb{R}$ is differentiable and constant on the line x = y, argue that $f_x(t,t) = -f_y(t,t)$ for all $t \in \mathbb{R}$.

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.