VECTOR CALCULUS (MATH 53)

1. Double and Triple Integrals

Problem 1 (Stewart, Exercise 15.1.11). Evaluate the double integral

$$\iint_{R} (4 - 2y) \, dA, \quad R = [0, 2] \times [0, 1],$$

by first identifying it as the volume of a solid.

Problem 2 (Stewart, Exercise 15.1.34). Evaluate the double integral

$$\iint_{R} \frac{1}{1+x+y} \, dA, \quad R = [1,3] \times [1,2].$$

Problem 3 (Stewart, Exercise 15.1.42). Find the volume of the solid in the first octant bounded by the cylinder $z = 16 - x^2$ and the plane y = 5.

Problem 4 (Stewart, Exercise 15.1.49). Use symmetry to evaluate the double integral

$$\iint_{R} \frac{xy}{1+x^4} dA, \quad R = [-1, 1] \times [0, 1].$$

Problem 5 (Stewart, Exercise 15.2.22). Evaluate the double integral

$$\iint_D y \, dA,$$

where D is the triangular region with vertices (0,0), (1,1), and (4,0).

Problem 6 (Stewart, Exercise 15.2.27). Find the volume of the tetrahedron enclosed by the coordinate planes and the plane 2x + y + z = 4.

Problem 7 (Stewart, Example 15.2.4). Find the volume of the tetrahedron bounded by the planes x + 2y + z = 2, x = 2y, and z = 0 using:

- (1) double integrals,
- (2) triple integrals.

[Hint: The tetrahedron lies in the first octant. Sketch it by looking from your left.]

Problem 8 (Stewart, Exercise 15.2.40). Sketch the solid whose volume is given by the integral

$$\int_{0}^{1} \int_{0}^{1-x^{2}} (1-x) \, dy dx.$$

Problem 9 (Stewart, Exercise 15.2.(51,52,55)). Evaluate the following integrals:

- (1) $\int_0^1 \int_{3y}^3 e^{x^2} dx dy$,
- (2) $\int_0^1 \int_{x^2}^1 \sqrt{y} \sin y \, dy dx$,
- (3) $\int_0^1 \int_{\arcsin y}^{\pi/2} \cos x \sqrt{1 + \cos^2 x} \, dx dy$.

[Hint: Reverse the order of integration first.]

Problem 10 (Cal Final, Summer 2018W). Calculate the iterated integral

$$\int_0^4 \int_{\sqrt{x}}^2 e^{y^3} \, dy dx.$$

Problem 11 (Stewart, Exercise 15.2.(65,67,68)). Use geometry to evaluate the following double integrals.

- (1) $\iint_D (x+2) dA$, $D = \{(x,y) \mid 0 \le y \le \sqrt{9-x^2}\}$,
- (2) $\iint_D (2x+3y) dA$, $D = [0,a] \times [0,b]$,
- (3) $\iint_D (2 + x^2 y^3 y^2 \sin x) dA$, $D = \{(x, y) \mid |x| + |y| \le 1\}$.

Problem 12 (Stewart, Exercise 15.4.9). Find the mass and center of mass of the lamina that occupies the region bounded by the curves $y = e^{-x}$, y = 0, x = 0, and x = 1 if its density function is $\rho(x, y) = xy$.

Problem 13 (Stewart, Exercise 15.5.3). Use the formula

$$A(S) = \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} \, dA$$

to find the surface area of the part of the plane 3x + 2y + z = 6 that lies in the first octant.

Problem 14 (Stewart, Exercise 15.5.7). Find the surface area of the part of the hyperbolic paraboloid $z = y^2 - x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$. [Hint: Use the formula for surface area via double integrals.]

Problem 15 (Stewart, Exercise 15.6.29). Express the integral $\iiint_E f(x, y, z) dV$ as an iterated integral in six different ways, where E is the solid bounded by $y = 4 - x^2 - 4z^2$ and y = 0.

Problem 16 (Stewart, Exercise 15.6.33). Sketch the solid whose volume is given by the triple integral

$$\int_0^1 \int_{\sqrt{x}}^1 \int_0^{1-y} f(x, y, z) \, dz dy dx.$$

Write five other iterated integrals that are equal to the given iterated integral. [Note: Sketch given in the book.]

Problem 17 (Stewart, Exercise 15.6.36). Write five other iterated integrals that are equal to the iterated integral

$$\int_0^1 \int_y^1 \int_0^z f(x, y, z) \, dx dz dy.$$

Problem 18 (Stewart, Exercise 15.6.(37,38)). Use geometry to evaluate the following double integrals.

- (1) $\iiint_C (4+5x^2yz^2) dV$, where C is the cylindrical region given by $x^2+y^2 \leq 4$ and $-2 \leq z \leq 2$.
- (2) $\iiint_B (z^3 + \sin y + 3) dV$, where B is the unit ball $x^2 + y^2 + z^2 \le 1$.

Problem 19 (Stewart, Exercise 15.6.42). Find the mass and center of mass of the tetrahedron in the first octant bounded by the plane x + y + z = 1 with density given by $\rho(x, y, z) = y$.

2. Polar, Cylindrical, and Spherical Coordinates

Problem 20 (Stewart, Exercise 15.3.(15,17)). Use double integrals to find the areas of the following regions.

- (1) One loop of the rose $r = \cos 3\theta$.
- (2) The region inside the circle $(x-1)^2 + y^2 = 1$ and outside the circle $x^2 + y^2 = 1$.

Problem 21 (Stewart, Exercise 15.3.27). Use polar coordinate to find the volume of the solid inside both the cylinders $x^2 + y^2 = 4$ and the ellipsoid $4x^2 + 4y^2 + z^2 = 64$.

Problem 22 (Stewart, Exercise 15.3.(29,30)). Evaluate the following integrals:

(1)
$$\int_0^2 \int_0^{\sqrt{4-x^2}} e^{-x^2-y^2} dy dx$$
 (2) $\int_0^a \int_{-\sqrt{a^2-y^2}}^{\sqrt{a^2-y^2}} (2x+y) dx dy$.

Problem 23 (Stewart, Exercise 15.3.35). A swimming pool is circular with a 40-feet diameter. The depth is constant along east-west lines and increases linearly from 2 feet at the south end to 7 feet at the north end. Find the volume of water in the pool.

Problem 24 (Stewart, Exercise 15.7.(15,16)). In each case, sketch the solid whose volume is given by the following integrals:

- (1) $\int_{-\pi/2}^{\pi/2} \int_0^2 \int_0^{r^2} r \, dz dr d\theta$,
- (2) $\int_0^2 \int_0^{2\pi} \int_0^r r \, dz d\theta dr$.

Problem 25 (Stewart, Exercise 15.7.21). Evaluate $\iiint_E x^2 dV$, where E is the solid that lies within the cylinder $x^2 + y^2 = 1$, above the plane z = 0, and below the cone $z^2 = 4x^2 + 4y^2$.

Problem 26 (Stewart, Exercise 15.7.25). Find the volume of the region E that lies between the paraboloid $z = 24 - x^2 - y^2$ and the cone $z = 2\sqrt{x^2 + y^2}$. Find the centroid of E (i.e., the center of mass in constant density).

Problem 27 (Stewart, Exercise 15.7.29). Evaluate

$$\int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_{\sqrt{x^2+y^2}}^{2} xz \, dz dx dy.$$

[Hint: Use cylindrical coordinates.]

Problem 28 (Stewart, Exercise 15.8.(17,18)). In each case, sketch the solid whose volume is given by the following integrals:

- (1) $\int_0^{\pi/6} \int_0^{\pi/2} \int_0^3 \rho^2 \sin \phi \, d\rho d\theta d\phi$,
- (2) $\int_0^{\pi/4} \int_0^{2\pi} \int_0^{\sec \phi} \rho^2 \sin \phi \, d\rho d\theta d\phi.$

Problem 29 (Stewart, Exercise 15.8.27). Find the volume of the part of the ball $\rho \leq a$ that lies between the cones $\phi = \pi/6$ and $\phi = \pi/3$.

Problem 30 (Stewart, Exercise 15.8.28). Find the average distance from a point inside a ball of radius a to its center.

Problem 31 (Stewart, Exercise 15.8.30). Find the volume of the solid that lies within the sphere $x^2 + y^2 + z^2 = 4$, above the xy-plane, and below the cone $z = \sqrt{x^2 + y^2}$.

Problem 32 (Stewart, Exercise 15.8.41). Evaluate

$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{2-x^2-y^2}} xy \, dz dy dx.$$

[Hint: Use spherical coordinates.]

Problem 33 (Cal Final, Summer 2018W). Let E be the region defined by the inequalities

$$x^2 + y^2 + z^2 \le 4$$
, $0 \le y \le x$, $z \ge 0$.

Calculate the total mass of E if the mass density is given by z^2 .

3. Change of Coordinates

Problem 34 (Stewart, Example 15.9.(23,25,27)). Evaluate the following integrals.

- (1) $\iint_R \frac{x-2y}{3x-y} dA$, where R is the parallelogram enclosed by the lines x-2y=0, x-2y=4, 3x-y=1, and 3x-y=8.
- (2) $\iint_R \cos\left(\frac{y-x}{y+x}\right) dA$, where R is the trapezoidal region with vertices (1,0), (2,0), (0,2), and 0,1.

(3) $\iint_R e^{x+y} dA$, where R is given by the inequality $|x| + |y| \le 1$.

Problem 35 (Stewart, Example 15.9.3). Evaluate $\int \int_R e^{(x+y)/(x-y)} dA$, where R is the trapezoidal region with vertices (1,0), (2,0), (0,-2), and (0,-1). [Hint: Define T by u=x+y and v=x-y and find that T^{-1} is defined by x=1/2(u+v) and y=1/2(u-v) and, therefore, $\partial(x,y)/\partial(u,v)=-1/2[Answer: 3/4(e-e^{-1})]$

Problem 36 (Stewart, Exercise 5.9.28). Let f be continuous on [0,1] and let R be the triangular region with vertices (0,0), (1,0), and (0,1). Show that

$$\iint_{R} f(x+y) dA = \int_{0}^{1} uf(u) du.$$

Problem 37 (Stewart, Exercise 5.56). Find the volume of the region bounded by the surface $\sqrt{x} + \sqrt{y} + \sqrt{z} = 1$ and the coordinate planes. [Hint: Use the change of coordinates $x = u^2$, $y = v^2$, and $z = w^2$.]

Problem 38 (Stewart, Exercise 5.57). Evaluate $\iint_R xy \, dA$, where R is the square with vertices (0,0), (1,1), (2,0), and (1,-1). [Hint: Use an appropriate change of coordinates.]

Problem 39 (Cal Final, Summer 2018W). Let D be the region in the plane where $x^2 + 2y^2 \le 1$. Compute the double integral

$$\iint_D (x^2 + 2y^2)^{2018} \, dA.$$

[Hint: Use u = x and $y = \sqrt{2}y$. Answer: $\sqrt{2}\pi/4038$.]

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.