General Changes of Coordinates

Problem 1 (Stewart, Example 15.9.(23,25,27)). Evaluate the following integrals.
(1) $\iint_{R} \frac{x-2 y}{3 x-y} d A$, where R is the parallelogram enclosed by the lines $x-2 y=0$, $x-2 y=4,3 x-y=1$, and $3 x-y=8$.
(2) $\iint_{R} \cos \left(\frac{y-x}{y+x}\right) d A$, where R is the trapezoidal region with vertices $(1,0),(2,0)$, $(0,2)$, and 0,1 .
(3) $\iint_{R} e^{x+y} d A$, where R is given by the inequality $|x|+|y| \leq 1$.

Problem 2 (Stewart, Example 15.9.3). Evaluate $\iint_{R} e^{(x+y) /(x-y)} d A$, where R is the trapezoidal region with vertices $(1,0),(2,0),(0,-2)$, and $(0,-1)$. [Hint: Define T by $u=x+y$ and $v=x-y$ and find that T^{-1} is defined by $x=1 / 2(u+v)$ and $y=1 / 2(u-v)$ and, therefore, $\partial(x, y) / \partial(u, v)=-1 / 2]\left[\right.$ Answer: $3 / 4\left(e-e^{-1}\right)$]

Problem 3 (Stewart, Exercise 5.9.28). Let f be continuous on $[0,1]$ and let R be the triangular region with vertices $(0,0),(1,0)$, and $(0,1)$. Show that

$$
\iint_{R} f(x+y) d A=\int_{0}^{1} u f(u) d u .
$$

Problem 4 (Stewart, Exercise 5.56). Find the volume of the region bounded by the surface $\sqrt{x}+\sqrt{y}+\sqrt{z}=1$ and the coordinate planes. [Hint: Use the change of coordinates $x=u^{2}, y=v^{2}$, and $z=w^{2}$.]

Problem 5 (Stewart, Exercise 5.57). Evaluate $\iint_{R} x y d A$, where R is the square with vertices $(0,0),(1,1),(2,0)$, and $(1,-1)$. [Hint: Use an appropriate change of coordinates.]
Problem 6 (UC Berkeley Final). Let D be the region in the plane where $x^{2}+2 y^{2} \leq 1$. Compute the double integral

$$
\iint_{D}\left(x^{2}+2 y^{2}\right)^{2018} d A
$$

[Hint: Use $u=x$ and $y=\sqrt{2} y$. Answer: $\sqrt{2} \pi / 4038$.]

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.

