GENERAL CHANGES OF COORDINATES

Problem 1 (Stewart, Example 15.9.(23,25,27)). Evaluate the following integrals.

- (1) $\iint_R \frac{x-2y}{3x-y} dA$, where R is the parallelogram enclosed by the lines x 2y = 0, x 2y = 4, 3x y = 1, and 3x y = 8.
- (2) $\iint_R \cos\left(\frac{y-x}{y+x}\right) dA$, where R is the trapezoidal region with vertices (1,0), (2,0), (0,2), and 0,1.
- (3) $\iint_{R} e^{x+y} dA$, where R is given by the inequality $|x| + |y| \leq 1$.

Problem 2 (Stewart, Example 15.9.3). Evaluate $\int \int_R e^{(x+y)/(x-y)} dA$, where R is the trapezoidal region with vertices (1,0), (2,0), (0,-2), and (0,-1). [Hint: Define T by u = x + y and v = x - y and find that T^{-1} is defined by x = 1/2(u+v) and y = 1/2(u-v) and, therefore, $\partial(x,y)/\partial(u,v) = -1/2$][Answer: $3/4(e-e^{-1})$]

Problem 3 (Stewart, Exercise 5.9.28). Let f be continuous on [0, 1] and let R be the triangular region with vertices (0, 0), (1, 0), and (0, 1). Show that

$$\iint_R f(x+y) \, dA = \int_0^1 u f(u) \, du.$$

Problem 4 (Stewart, Exercise 5.56). Find the volume of the region bounded by the surface $\sqrt{x} + \sqrt{y} + \sqrt{z} = 1$ and the coordinate planes. [Hint: Use the change of coordinates $x = u^2$, $y = v^2$, and $z = w^2$.]

Problem 5 (Stewart, Exercise 5.57). Evaluate $\iint_R xy \, dA$, where R is the square with vertices (0,0), (1,1), (2,0), and (1,-1). [Hint: Use an appropriate change of coordinates.]

Problem 6 (UC Berkeley Final). Let D be the region in the plane where $x^2 + 2y^2 \leq 1$. Compute the double integral

$$\iint_D (x^2 + 2y^2)^{2018} \, dA$$

[Hint: Use u = x and $y = \sqrt{2}y$. Answer: $\sqrt{2}\pi/4038$.]

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.