Spherical Coordinates

Problem 1 (Stewart, Exercise 15.8.(17,18)). In each case, sketch the solid whose volume is given by the following integrals:
(1) $\int_{0}^{\pi / 6} \int_{0}^{\pi / 2} \int_{0}^{3} \rho^{2} \sin \phi d \rho d \theta d \phi$,
(2) $\int_{0}^{\pi / 4} \int_{0}^{2 \pi} \int_{0}^{\sec \phi} \rho^{2} \sin \phi d \rho d \theta d \phi$.

Problem 2 (Stewart, Exercise 15.8.27). Find the volume of the part of the ball $\rho \leq a$ that lies between the cones $\phi=\pi / 6$ and $\phi=\pi / 3$.

Problem 3 (Stewart, Exercise 15.8.28). Find the average distance from a point inside a ball of radius a to its center.

Problem 4 (Stewart, Exercise 15.8.30). Find the volume of the solid that lies within the sphere $x^{2}+y^{2}+z^{2}=4$, above the xy-plane, and below the cone $z=\sqrt{x^{2}+y^{2}}$.

Problem 5 (Stewart, Exercise 15.8.41). Evaluate

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{2-x^{2}-y^{2}}} x y d z d y d x
$$

[Hint: Use spherical coordinates.]
Problem 6 (Cal Final). Let E be the region defined by the inequalities

$$
x^{2}+y^{2}+z^{2} \leq 4, \quad 0 \leq y \leq x, \quad z \geq 0
$$

Calculate the total mass of E if the mass density is given by z^{2}.

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.

