Polar and Cylindrical Coordinates

Problem 1 (Stewart, Exercise 15.3.(15,17)). Use double integrals to find the areas of the following regions.
(1) One loop of the rose $r=\cos 3 \theta$.
(2) The region inside the circle $(x-1)^{2}+y^{2}=1$ and outside the circle $x^{2}+y^{2}=1$.

Problem 2 (Stewart, Exercise 15.3.27). Use polar coordinate to find the volume of the solid inside both the cylinders $x^{2}+y^{2}=4$ and the ellipsoid $4 x^{2}+4 y^{2}+z^{2}=64$.

Problem 3 (Stewart, Exercise 15.3.(29,30)). Evaluate the following integrals:

$$
\text { (1) } \int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} e^{-x^{2}-y^{2}} d y d x \quad \text { (2) } \int_{0}^{a} \int_{-\sqrt{a^{2}-y^{2}}}^{\sqrt{a^{2}-y^{2}}}(2 x+y) d x d y
$$

Problem 4 (Stewart, Exercise 15.3.35). A swimming pool is circular with a 40 -feet diameter. The depth is constant along east-west lines and increases linearly from 2 feet at the south end to 7 feet at the north end. Find the volume of water in the pool.
Problem 5 (Stewart, Exercise 15.7.(15,16)). In each case, sketch the solid whose volume is given by the following integrals:
(1) $\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2} \int_{0}^{r^{2}} r d z d r d \theta$,
(2) $\int_{0}^{2} \int_{0}^{2 \pi} \int_{0}^{r} r d z d \theta d r$.

Problem 6 (Stewart, Exercise 15.7.21). Evaluate $\iiint_{E} x^{2} d V$, where E is the solid that lies within the cylinder $x^{2}+y^{2}=1$, above the plane $z=0$, and below the cone $z^{2}=4 x^{2}+4 y^{2}$.

Problem 7 (Stewart, Exercise 15.7.25). Find the volume of the region E that lies between the paraboloid $z=24-x^{2}-y^{2}$ and the cone $z=2 \sqrt{x^{2}+y^{2}}$. Find the centroid of E (i.e., the center of mass in constant density).
Problem 8 (Stewart, Exercise 15.7.29). Evaluate

$$
\int_{-2}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{2} x z d z d x d y
$$

[Hint: Use cylindrical coordinates.]

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.

