TRIPLE INTEGRALS

Problem 1 (Stewart, Exercise 15.6.29). Express the integral $\iiint_E f(x, y, z) dV$ as an iterated integral in six different ways, where E is the solid bounded by $y = 4 - x^2 - 4z^2$ and y = 0.

Problem 2 (Stewart, Exercise 15.6.33). Sketch the solid whose volume is given by the triple integral

$$\int_0^1 \int_{\sqrt{x}}^1 \int_0^{1-y} f(x,y,z) \, dz \, dy \, dx.$$

Write five other iterated integrals that are equal to the given iterated integral. [Note: Sketch given in the book.]

Problem 3 (Stewart, Exercise 15.6.36). Write five other iterated integrals that are equal to the iterated integral

$$\int_0^1 \int_y^1 \int_0^z f(x, y, z) \, dx \, dz \, dy.$$

Problem 4 (Stewart, Exercise 15.6.(37,38)). Use geometry to evaluate the following double integrals.

(1) $\iiint_C (4+5x^2yz^2) dV$, where C is the cylindrical region given by $x^2 + y^2 \le 4$ and $-2 \le z \le 2$.

(2) $\iiint_B (z^3 + \sin y + 3) \, dV$, where B is the unit ball $x^2 + y^2 + z^2 \le 1$.

Problem 5 (Stewart, Exercise 15.6.42). Find the mass and center of mass of the tetrahedron in the first octant bounded by the plane x + y + z = 1 with density given by $\rho(x, y, z) = y$.

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.