Triple Integrals

Problem 1 (Stewart, Exercise 15.6.29). Express the integral $\iiint_{E} f(x, y, z) d V$ as an iterated integral in six different ways, where E is the solid bounded by $y=4-x^{2}-4 z^{2}$ and $y=0$.
Problem 2 (Stewart, Exercise 15.6.33). Sketch the solid whose volume is given by the triple integral

$$
\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{0}^{1-y} f(x, y, z) d z d y d x
$$

Write five other iterated integrals that are equal to the given iterated integral. [Note: Sketch given in the book.]

Problem 3 (Stewart, Exercise 15.6.36). Write five other iterated integrals that are equal to the iterated integral

$$
\int_{0}^{1} \int_{y}^{1} \int_{0}^{z} f(x, y, z) d x d z d y
$$

Problem 4 (Stewart, Exercise 15.6.(37,38)). Use geometry to evaluate the following double integrals.
(1) $\iiint_{C}\left(4+5 x^{2} y z^{2}\right) d V$, where C is the cylindrical region given by $x^{2}+y^{2} \leq 4$ and $-2 \leq z \leq 2$.
(2) $\iiint_{B}\left(z^{3}+\sin y+3\right) d V$, where B is the unit ball $x^{2}+y^{2}+z^{2} \leq 1$.

Problem 5 (Stewart, Exercise 15.6.42). Find the mass and center of mass of the tetrahedron in the first octant bounded by the plane $x+y+z=1$ with density given by $\rho(x, y, z)=y$.

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.

