Double Integrals

Problem 1 (Stewart, Exercise 15.1.11). Evaluate the double integral

$$
\iint_{R}(4-2 y) d A, \quad R=[0,2] \times[0,1]
$$

by first identifying it as the volume of a solid.
Problem 2 (Stewart, Exercise 15.1.34). Evaluate the double integral

$$
\iint_{R} \frac{1}{1+x+y} d A, \quad R=[1,3] \times[1,2] .
$$

Problem 3 (Stewart, Exercise 15.1.42). Find the volume of the solid in the first octant bounded by the cylinder $z=16-x^{2}$ and the plane $y=5$.
Problem 4 (Stewart, Exercise 15.1.49). Use symmetry to evaluate the double integral

$$
\iint_{R} \frac{x y}{1+x^{4}} d A, \quad R=[-1,1] \times[0,1] .
$$

Problem 5 (Stewart, Exercise 15.2.22). Evaluate the double integral

$$
\iint_{D} y d A
$$

where D is the triangular region with vertices $(0,0),(1,1)$, and $(4,0)$.
Problem 6 (Stewart, Exercise 15.2.27). Find the volume of the tetrahedron enclosed by the coordinate planes and the plane $2 x+y+z=4$.
Problem 7 (Stewart, Example 15.2.4). Find the volume of the tetrahedron bounded by the planes $x+2 y+z=2, x=2 y$, and $z=0$ using:
(1) double integrals,
(2) triple integrals.
[Hint: The tetrahedron lies in the first octant. Sketch it by looking from your left.]
Problem 8 (Stewart, Exercise 15.2.40). Sketch the solid whose volume is given by the integral

$$
\int_{0}^{1} \int_{0}^{1-x^{2}}(1-x) d y d x
$$

Problem 9 (Stewart, Exercise 15.2.(51,52,55)). Evaluate the following integrals:
(1) $\int_{0}^{1} \int_{3 y}^{3} e^{x^{2}} d x d y$,
(2) $\int_{0}^{1} \int_{x^{2}}^{1} \sqrt{y} \sin y d y d x$,
(3) $\int_{0}^{1} \int_{\arcsin y}^{\pi / 2} \cos x \sqrt{1+\cos ^{2} x} d x d y$.
[Hint: Reverse the order of integration first.]
Problem 10 (Cal Final, Summer 2018W). Calculate the iterated integral

$$
\int_{0}^{4} \int_{\sqrt{x}}^{2} e^{y^{3}} d y d x
$$

Problem 11 (Stewart, Exercise 15.2.(65,67,68)). Use geometry to evaluate the following double integrals.
(1) $\iint_{D}(x+2) d A, \quad D=\left\{(x, y) \mid 0 \leq y \leq \sqrt{9-x^{2}}\right\}$,
(2) $\iint_{D}(2 x+3 y) d A, \quad D=[0, a] \times[0, b]$,
(3) $\iint_{D}\left(2+x^{2} y^{3}-y^{2} \sin x\right) d A, \quad D=\{(x, y)| | x|+|y| \leq 1\}$.

Problem 12 (Stewart, Exercise 15.4.9). Find the mass and center of mass of the lamina that occupies the region bounded by the curves $y=e^{-x}, y=0, x=0$, and $x=1$ if its density function is $\rho(x, y)=x y$.
Problem 13 (Stewart, Exercise 15.5.3). Use the formula

$$
A(S)=\iint_{D} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A
$$

to find the surface area of the part of the plane $3 x+2 y+z=6$ that lies in the first octant.

Problem 14 (Stewart, Exercise 15.5.7). Find the surface area of the part of the hyperbolic paraboloid $z=y^{2}-x^{2}$ that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$. [Hint: Use the formula for surface area via double integrals.]

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.

