SOLUTIONS FOR QUIZ 3

Note: Most of the problems were taken from the textbook [1].
Problem 1. Find the Maclaurin series of $f(x)=\frac{1}{\sqrt{5-x}}$.
Solution: Notice that

$$
\begin{aligned}
\frac{1}{\sqrt{5-x}} & =\frac{1}{\sqrt{5}}\left(1-\frac{x}{5}\right)^{-1 / 2} \\
& =\frac{1}{\sqrt{5}} \sum_{n=0}^{\infty}\binom{-1 / 2}{n}\left(-\frac{x}{5}\right)^{n} \\
& =\frac{1}{\sqrt{5}} \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right) \ldots\left(-\frac{1}{2}-n+1\right)}{5^{n} n!} x^{n} \\
& =\frac{1}{\sqrt{5}} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}+1\right) \ldots\left(\frac{1}{2}+n-1\right)}{5^{n} n!} x^{n} \\
& =\frac{1}{\sqrt{5}} \sum_{n=0}^{\infty} \frac{1 \cdot 3 \cdot \ldots \cdot(2 n-1)}{10^{n} n!} x^{n} .
\end{aligned}
$$

Problem 2. Evaluate $\int_{0}^{1} e^{-x^{2}} d x$ correct to within an error of 0.001. [Hint: Use Taylor expansion, then use the Alternating Estimation Theorem.]

Solution: The Taylor series for $f(x)=e^{-x^{2}}$ is

$$
e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{n!}
$$

Then

$$
\begin{aligned}
\int_{0}^{1} e^{-x^{2}} d x & =\int_{0}^{1}\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{n!}\right) d x \\
& =\left.\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) n!}\right)\right|_{0} ^{1} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1) n!} \\
& =1-\frac{1}{3}+\frac{1}{10}-\frac{1}{42}+\frac{1}{216}-\frac{1}{1320}+\cdots
\end{aligned}
$$

After applying the Alternating Estimation Theorem to estimate the error, we see that the first term with absolute within the given value of 0.001 is the sixth term (i.e., $n=5$)

$$
\frac{1}{11 \cdot 5!}=\frac{1}{1320}<0.001
$$

Hence,

$$
\int_{0}^{1} e^{-x^{2}} d x \approx 1-\frac{1}{3}+\frac{1}{10}-\frac{1}{42}+\frac{1}{216}
$$

is an approximation within the given error.
Problem 3. Solve the differential equation $\frac{d y}{d x}=\frac{x^{5}+1}{x^{3} y^{2}+y^{4} x^{3}}$.
Solution: We can rewrite our initial equation as

$$
\frac{d y}{d x}=\frac{x^{5}+1}{x^{3}\left(y^{2}+y^{4}\right)}=\left(\frac{x^{5}+1}{x^{3}}\right)\left(\frac{1}{y^{2}+y^{4}}\right)
$$

and we obtain that

$$
\begin{equation*}
\int\left(y^{2}+y^{4}\right) d y=\int \frac{x^{5}+1}{x^{3}} d x \tag{1}
\end{equation*}
$$

Integrating equation (1), we have

$$
\frac{1}{3} y^{3}+\frac{1}{5} y^{5}=\frac{1}{3} x^{3}-\frac{1}{2 x^{2}}+C
$$

Problem 4. Suppose that a population develop according to the logistic equation $d P / d t=$ $0.06 P-0.0006 P^{2}$, where t is measured in weeks. (a) What is the carrying capacity?
(b) What is the value of k ? (c) What are the equilibrium solutions. (d) If the initial population is 50 , what is the population after 10 weeks?

Solution: Rewriting the given logistic equation, we have

$$
\begin{equation*}
d P / d t=0.06 P(1-0.01 P)=0.06 P\left(1-\frac{P}{100}\right) \tag{2}
\end{equation*}
$$

As a result, the carrying capacity is $M=100$ (a) and $k=0.06$ (b). For part (c), we need to find the values of P for which $d P / d t=0$. Looking at (2), we see that $d P / d t=0$ only when $P=0$ or $P=100$. Hence, the equilibrium solutions are $P=0$ and $P=100$. Lastly, for part (d), we need to find the solution to the logistic equation, namely, we need to find the values of A, k, and M and substitute them in the following equation

$$
P(t)=\frac{M}{1+A e^{-k t}}
$$

In previous parts, we found the values of $M=100$ and $k=0.06$. To find A, we use the formula

$$
A=\frac{M-P_{0}}{P_{0}}=\frac{100-50}{50}=1
$$

Thus,

$$
P(t)=\frac{100}{1+e^{-0.06 t}}
$$

Finally, the population after 10 weeks is $P(10)=100 /\left(1+e^{-0.6}\right)$.

Problem 5. Solve the first-order linear differential equations:
(1) $y^{\prime}-y=e^{x}$
(2) $y^{\prime}+2 x y=1$.

Solution:

(1) We have $P(x)=-1, Q(x)=e^{x}$, and $I(x)=e^{\int-1 d x}=e^{-x}$. Hence

$$
y=(x+C) e^{x}
$$

(2) Multiplying by $e^{x^{2}}$ the given equation, we obtain

$$
e^{x^{2}} y^{\prime}+e^{x^{2}} 2 x y=e^{x^{2}}
$$

Moreover, integrating the previous equation, we have

$$
e^{x^{2}} y=\int\left(e^{x^{2}} y\right)^{\prime}=\int e^{x^{2}} d x
$$

and, therefore,

$$
y=\frac{\int e^{x^{2}} d x}{e^{x^{2}}}
$$

References

[1] J. Stewart: Single Variable Calculus 8th Edition, Cengage Learning, Boston 2015.

