SOLUTIONS FOR QUIZ 2

Note: Most of the problems were taken from the textbook [1].

Problem 1. Determine whether the sequence $a_n = \cos(\sqrt[n]{\pi^{207+n}})$ converges or diverges. If it is convergent, find the limit.

Solution: Since $\cos x$ and π^x are both continuous functions we have that

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \cos\left(\pi^{\frac{207}{n}+1}\right) = \cos\left(\pi^{\lim \frac{207}{n}+1}\right) = \cos(\pi) = -1.$$

Hence $\{a_n\}$ is a convergent sequence.

Problem 2. Determine whether the series

$$\sum_{n=1}^{\infty} \sqrt[3]{\frac{n^2}{n^2+20n+9}}$$

is convergent or divergent. If it is convergent, find the sum.

Solution: As $\sqrt[3]{x}$ is a continuous function, it follows that

$$\lim_{n \to \infty} \sqrt[3]{\frac{n^2}{n^2 + 20n + 9}} = \sqrt[3]{\lim_{n \to \infty} \frac{1}{1 + 20/n + 9/n^2}} = \sqrt[3]{1 = 1}.$$

Since the general term of the series does not converges to zero, the series diverges. \Box

Problem 3. Find the exact area of the surface of revolution obtained by rotating the curve $x = 1 + 2y^2$, $1 \le y \le 2$ about the x-axis.

Solution: From $x = 1 + 2y^2$, we find that $f(x) = y = \sqrt{\frac{x-1}{2}}$. Since $1 \le y \le 2$, one has that $3 \le x \le 9$. In addition,

$$1 + [f(x)']^2 = 1 + \left(\frac{1}{\sqrt{2}}\frac{1}{2\sqrt{x-1}}\right)^2 = 1 + \frac{1}{8(x-1)} = \frac{8x-7}{8(x-1)}.$$

Therefore the area of the surface of revolution is

$$2\pi \int_{3}^{9} \sqrt{\frac{x-1}{2}} \sqrt{\frac{8x-7}{8(x-1)}} \, dx = \frac{\pi}{2} \int_{3}^{9} (8x-7)^{1/2} \, dx$$
$$= \frac{\pi}{16} \int_{17}^{65} u^{1/2} \, du = \frac{\pi}{24} \left(\sqrt{65^3} - \sqrt{17^3}\right).$$

1

Problem 4. Use the Integral Test to determine whether the series $\sum_{n=1}^{\infty} n^2 \pi^{-n^3}$ is convergent or divergent.

Solution: The function $f(x) = x^2 \pi^{-x^3}$ is continuous and positive for all $x \ge 1$. Moreover,

$$f(x)' = \frac{\pi^{x^3} \left(2x - (3\ln \pi)x^4\right)}{\pi^{2x^3}} < 0$$

for all $x \ge 1$. Then f(x) is decreasing when $x \ge 1$. Taking $u = x^3$ below, we find that

$$\int_{1}^{\infty} f(x) \, dx = \frac{1}{3} \int_{1}^{\infty} \left(\frac{1}{\pi}\right)^{u} \, du = \frac{1}{3\ln(1/\pi)}(-1/\pi) = \frac{1}{3\pi\ln\pi}$$

Since the above improper integral is finite, the series converges by the Integral Test. $\hfill \Box$

Problem 5. Determine whether the series

$$\sum_{n=1}^{\infty} \left(\frac{2}{(n+1)(n+3)} + \frac{3}{\pi^{n+1}} \right)$$

is convergent or divergent. If it is convergent, find the sum.

Solution: Notice that

$$\sum_{n=1}^{\infty} \left(\frac{2}{(n+1)(n+3)} + \frac{3}{\pi^{n+1}} \right) = \sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+3} \right) + \frac{3}{\pi^2} \sum_{n=0}^{\infty} \left(\frac{1}{\pi} \right)^n$$
$$= \lim_{n \to \infty} \left(\frac{1}{2} + \frac{1}{3} - \frac{1}{n+2} - \frac{1}{n+3} \right) + \frac{3/\pi^2}{1 - 1/\pi}$$
$$= \frac{5}{6} + \frac{3}{\pi^2 - \pi}.$$

Hence the series converges to $5/6 + 3/(\pi^2 - \pi)$.

References

[1] J. Stewart: Single Variable Calculus 8th Edition, Cengage Learning, Boston 2015.