SOLUTIONS FOR QUIZ 2

Note: Most of the problems were taken from the textbook [1]

Problem 1. Determine whether the sequence a, = cos (\"/720”") converges or di-
verges. If it is convergent, find the limit.

Solution: Since cosx and 7% are both continuous functions we have that

lim a, = lim cos (77 n “) = cos <7Thm n H) = cos(m) = —1.
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Hence {a,} is a convergent sequence. O

Problem 2. Determine whether the series
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1s convergent or divergent. If it is convergent, find the sum.

Solution: As /x is a continuous function, it follows that
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Since the general term of the series does not converges to zero, the series diverges. [

Problem 3. Find the exact area of the surface of revolution obtained by rotating the
curve x = 1+ 2y?, 1 <y < 2 about the x-axis.

Solution: From z = 1 + 2y* we find that f(z) =y = \/xT_l. Since 1 <y < 2, one has
that 3 <z < 9. In addition,
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Therefore the area of the surface of revolution is
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Problem 4. Use the Integral Test to determine whether the series y - 2’ s
convergent or divergent.

Solution: The function f(z) = z>7~*" is continuous and positive for all # > 1. More-
over,
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for all z > 1. Then f(z) is decreasing when x > 1. Taking u = 2® below, we find that

Since the above improper integral is finite, the series converges by the Integral Test.
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Problem 5. Determine whether the series
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is convergent or divergent. If it is convergent, find the sum.
Solution: Notice that
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Hence the series converges to 5/6 + 3/(7? — ). O
REFERENCES

[1] J. Stewart: Single Variable Calculus 8th Edition, Cengage Learning, Boston 2015.



