PROBLEM SET 9: AREA OF A SURFACE OF REVOLUTION

Note: Most of the problems were taken from the textbook [1].
Problem 1. Find the total area of of the surface resulting from rotating the curve
a) $y=x^{3}, 0 \leq x \leq 2$ about the x-axis;
b) $y=\cos \left(\frac{1}{2} x\right), 0 \leq x \leq \pi$ about the x-axis;
c) $y=\frac{x^{3}}{6}+\frac{1}{2 x}, 1 / 2 \leq x \leq 1$ about the x-axis;
d) $x^{2 / 3}+y^{2 / 3}=1,0 \leq y \leq 1$ about the y-axis;
e) $x=\frac{1}{4} y^{2}-\frac{1}{2} \ln y, 1 \leq y \leq 2$ about the y-axis.

Problem 2. Show that the total area of the surface of revolution obtained by rotating the curve $y=1 / x$ with $x \geq 1$ about the x-axis is infinite.

Problem 3. Show that the total area of the surface of revolution obtained by rotating the curve $y=e^{-x}$ with $x \geq 0$ about the x-axis is finite.
Problem 4. Show that the area of the sphere of radius r is $4 \pi r^{2}$.
Problem 5. Find the total area of of the surface resulting from rotating the circle $x^{2}+y^{2}=r^{2}$ about the line $y=r$.

REFERENCES

[1] J. Stewart: Single Variable Calculus 8th Edition, Cengage Learning, Boston 2015.

