PROBLEM SET 8: ARC LENGTH

Note: Most of the problems were taken from the textbook [1].

Problem 1. Find the length of the following curve in the specified intervals.

a)
$$y = 1 + 6x^{3/2}$$
, $0 \le x \le 1$;
b) $x = \frac{y^4}{8} + \frac{1}{4y^2}$, $1 \le y \le 2$;
c) $x = \frac{1}{3}\sqrt{y}(y-3)$, $1 \le y \le 9$;
d) $y = \ln(\cos x)$, $0 \le x \le \pi/3$;
e) $y = \frac{x^2}{4} - \frac{1}{2}\ln x$, $1 \le x \le 2$;
f) $y = \sqrt{x - x^2} + \sin^{-1}\sqrt{x}$, $0 \le x \le 1/2$;
g) $y = \ln(1 - x^2)$, $0 \le x \le 1/2$.

Problem 2. Find the arc length function for the curve $y = \sin^{-1} x + \sqrt{1 - x^2}$ with starting point (0, 1).

Problem 3. For the function $f(x) = \frac{1}{4}e^x - e^{-x}$, show that the arc length on any interval has the same value as the area under the curve.

References

[1] J. Stewart: Single Variable Calculus 8th Edition, Cengage Learning, Boston 2015.