PROBLEM SET 8: ARC LENGTH

Note: Most of the problems were taken from the textbook [1].
Problem 1. Find the length of the following curve in the specified intervals.
a) $y=1+6 x^{3 / 2}, \quad 0 \leq x \leq 1$;
b) $x=\frac{y^{4}}{8}+\frac{1}{4 y^{2}}, \quad 1 \leq y \leq 2$;
c) $x=\frac{1}{3} \sqrt{y}(y-3), \quad 1 \leq y \leq 9$;
d) $y=\ln (\cos x), \quad 0 \leq x \leq \pi / 3$;
e) $y=\frac{x^{2}}{4}-\frac{1}{2} \ln x, \quad 1 \leq x \leq 2$;
f) $y=\sqrt{x-x^{2}}+\sin ^{-1} \sqrt{x}, \quad 0 \leq x \leq 1 / 2$;
g) $y=\ln \left(1-x^{2}\right), \quad 0 \leq x \leq 1 / 2$.

Problem 2. Find the arc length function for the curve $y=\sin ^{-1} x+\sqrt{1-x^{2}}$ with starting point $(0,1)$.
Problem 3. For the function $f(x)=\frac{1}{4} e^{x}-e^{-x}$, show that the arc length on any interval has the same value as the area under the curve.

References

[1] J. Stewart: Single Variable Calculus 8th Edition, Cengage Learning, Boston 2015.

