PROBLEM SET 6: APPROXIMATE INTEGRATION

Note: Most of the problems were taken from the textbook [1].
Problem 1. Use the Trapezoidal Rule to approximate the given integrals with $n=10$:
a) $\int_{1}^{2} \sqrt{x^{3}-1} d x$
b) $\int_{0}^{2} \frac{e^{x}}{1+x^{2}} d x$
c) $\int_{2}^{3} \frac{d x}{\ln x}$

Problem 2. Use the Midpoint Rule to approximate the given integrals with $n=8$:
a) $\int_{0}^{4} x^{3} \sin x d x$
b) $\int_{0}^{4} \sqrt{x} \cos x d x$
c) $\int_{0}^{4} \ln \left(1+e^{x}\right) d x$

Problem 3. Use the Simpson's to approximate the given integrals with $n=4$:
a) $\int_{0}^{\pi / 2} \sqrt[3]{1+\cos x} d x$
b) $\int_{1}^{3} \frac{\sin x}{x} d x$

Problem 4. How large should n be to guarantee that the Simpson's Rule approximation to $\int_{0}^{1} e^{x^{2}} d x$ is accurate to within 0.00001 ?

References

[1] J. Stewart: Single Variable Calculus 8th Edition, Cengage Learning, Boston 2015.

