PROBLEM SET 20: SOME APPLICATIONS OF TAYLOR SERIES

Note: Most of the problems were taken from the textbook [1].
Problem 1. Evaluate the indefinite integral as an infinite series.
a) $\int \sqrt{1+x^{3}} d x$;
b) $\int x^{2} \sin \left(x^{2}\right) d x$;
c) $\int \frac{\cos x-1}{x} d x$;
d) $\int \tan ^{-1}\left(x^{2}\right) d x$.

Problem 2. Use series to approximate the definite integral to within the indicated accuracy.
a) $\int_{0}^{1 / 2} x^{3} \tan ^{-1} x d x \quad$ (four decimal places);
b) $\int_{0}^{1} \sin \left(x^{4}\right) d x \quad$ (four decimal places);
c) $\int_{0}^{0.5} x^{2} e^{-x^{2}} d x \quad(\mid$ error $\mid<0.001)$.

Problem 3. Let $f(x)=\left(1+x^{3}\right)^{30}$. Compute $f^{(57)}$ and $f^{(58)}$.
Problem 4. Find the Taylor polynomial $T_{3}(x)$ for $f(x)=\cos x$ at $a=\pi / 2$. Estimate $\cos 80^{\circ}$ correct to five decimal places.

Problem 5. Approximate $f(x)=x \sin x$ at 0 by its Taylor polynomial $T_{4}(x)$ when $-1 \leq x \leq 1$. Estimate the potential error of this approximation.

References

[1] J. Stewart: Single Variable Calculus 8th Edition, Cengage Learning, Boston 2015.

