PROBLEM SET 19: TAYLOR AND MACLAURIN SERIES

Note: Most of the problems were taken from the textbook [1].
Problem 1. Find the Taylor series representation for $f(x)$ centered at the given value of a. Also, find the associated radius of convergence.
a) $f(x)=x^{5}+2 x^{3}+x, \quad a=2$;
b) $f(x)=\ln x, a=5$;
c) $f(x)=1 / x, a=3$;
d) $f(x)=\tan ^{-1}\left(x^{3}\right), a=0$;
e) $f(x)=\sqrt{x}, a=16$;
f) $f(x)=\frac{x^{2}}{\sqrt{2+x}}, \quad a=0$;
g) $f(x)=\sqrt[3]{8+x}, a=0$;
h) $f(x)=x^{2} \ln \left(1+x^{3}\right), a=0$;
i) $f(x)=\sin ^{2} x, a=0$.

Problem 2. Use Maclaurin series to find the following limits.
a) $\lim _{x \rightarrow 0} \frac{x-\ln (1+x)}{x^{2}}$;
b) $\lim _{x \rightarrow 0} \frac{1-\cos x}{1+x-e^{x}}$;
c) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-\frac{1}{2} x}{x^{2}}$;
d) $\lim _{x \rightarrow 0} \frac{x^{3}-3 x+3 \tan ^{-1} x}{x^{5}}$.

References

[1] J. Stewart: Single Variable Calculus 8th Edition, Cengage Learning, Boston 2015.

