PROBLEM SET 17: POWER SERIES

Note: Most of the problems were taken from the textbook [1].

Problem 1. Find the radius of convergence and the interval of convergence of the series.

a) $\sum_{n=1}^{\infty} n^n x^n;$ b) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n5^n} x^n;$ c) $\sum_{n=2}^{\infty} \frac{(x+2)^n}{2^n \ln n};$ d) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{8^n} (x+6)^n;$ e) $\sum_{n=1}^{\infty} (2x-1)^n 5^n \sqrt{n};$ f) $\sum_{n=1}^{\infty} \frac{n}{b^n} (x-a)^n, \quad b > 0;$ g) $\sum_{n=1}^{\infty} n! (3x-1)^n;$ h) $\sum_{n=1}^{\infty} \frac{(5x-4)^n}{n^3};$ i) $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{1\cdot 3 \cdot 5 \cdots (2n-1)};$ j) $\sum_{n=1}^{\infty} \frac{n! x^n}{1\cdot 3 \cdot 5 \cdots (2n-1)}.$

Problem 2. Suppose that $\sum_{n=0}^{\infty} c_n x^n$ converges when x = -4 and diverges when x = 6. What can we say about the convergence or divergence of the series:

(a)
$$\sum_{n=0}^{\infty} c_n$$
; (b) $\sum_{n=0}^{\infty} c_n 8^n$; (c) $\sum_{n=0}^{\infty} c_n (-3)^n$; (d) $\sum_{n=0}^{\infty} (-1)^n c_n 9^n$.

Problem 3. Let p and q be real numbers such that p < q. Find a power series whose interval of convergence is (a) (p,q); (b) (p,q]; (c) [p,q), and (d) [p,q].

Problem 4. Is it possible to find a power series whose interval of convergence is $[0, \infty)$? *Explain.*

References

[1] J. Stewart: Single Variable Calculus 8th Edition, Cengage Learning, Boston 2015.