PROBLEM SET 11: SERIES

Note: Most of the problems were taken from the textbook [1].
Problem 1. Decide whether each series is convergent or divergent. If it is convergent, compute its value.
а) $\sum_{n=1}^{\infty} \frac{5}{\pi^{n}}$;
b) $\sum_{n=0}^{\infty} \frac{3^{n+1}}{(-2)^{n}}$;
c) $\sum_{n=1}^{\infty}(\sin 100)^{n}$;
d) $\sum_{n=1}^{\infty} \frac{3}{n(n+3)}$
e) $\sum_{n=0}^{\infty}(\sqrt{3})^{-n}$;
f) $\sum_{n=1}^{\infty} \tan ^{-1}(n)$;
g) $\sum_{n=0}^{\infty} \frac{1}{n^{2}+3 n+2}$
h) $\sum_{n=1}^{\infty}\left(\frac{1}{e^{n}}+\frac{1}{n(n+1)}\right)$.

Problem 2. Determine the values of x for which the following series converges.
а) $\sum_{n=0}^{\infty} \frac{(x-2)^{n+1}}{3^{n}}$;
b) $\sum_{n=0}^{\infty} \frac{\sin ^{n} x}{3^{n}}$;
c) $\sum_{n=0}^{\infty} e^{n x}$;

Problem 3. Show that the following series is divergent and also show that its sequence of terms converges to zero:

$$
\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{n}\right)
$$

References

[1] J. Stewart: Single Variable Calculus 8th Edition, Cengage Learning, Boston 2015.

