PROBLEM SET 10: SEQUENCES

Note: Most of the problems were taken from the textbook [1].

Problem 1. Decide whether each of the following sequences converges:

a) $\{a_n\}$, where $a_n = \frac{3\sqrt{n}}{\sqrt{n+2}}$; b) $\{a_n\}$, where $a_n = \ln(n+1) - \ln n$; c) $\left\{\frac{\ln n}{\ln 2n}\right\}$; d) $\{a_n\}$, where $a_n = n\sin(1/n)$; e) $\{a_n\}$, where $a_n = \left(1 + \frac{2}{n}\right)^n$; f) $\{a_n\}$, where $a_n \sqrt[n]{n}$.

Problem 2. Find the limit of the sequence $\{\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2}\sqrt{2}}, \dots\}$.

Problem 3. Consider the sequence $\{a_n\}$ recurrently defined as $a_1 = 2$ and $a_{n+1} = \frac{1}{3-a_n}$.

- (1) Assuming that $0 \le a_n \le 2$ and that the sequence $\{a_n\}$ is decreasing, argue that $\{a_n\}$ is convergent and find its limit.
- (2) Can you show that $0 \le a_n \le 2$ for every natural n?
- (3) Can you show that $\{a_n\}$ is decreasing?

References

[1] J. Stewart: Single Variable Calculus 8th Edition, Cengage Learning, Boston 2015.