PROBLEM SET 10: SEQUENCES

Note: Most of the problems were taken from the textbook [1].
Problem 1. Decide whether each of the following sequences converges:
a) $\left\{a_{n}\right\}$, where $a_{n}=\frac{3 \sqrt{n}}{\sqrt{n}+2}$;
b) $\left\{a_{n}\right\}$, where $a_{n}=\ln (n+1)-\ln n$;
c) $\left\{\frac{\ln n}{\ln 2 n}\right\}$;
d) $\left\{a_{n}\right\}$, where $a_{n}=n \sin (1 / n)$;
e) $\left\{a_{n}\right\}$, where $a_{n}=\left(1+\frac{2}{n}\right)^{n}$;
f) $\left\{a_{n}\right\}$, where $a_{n} \sqrt[n]{n}$.

Problem 2. Find the limit of the sequence $\{\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2}}}, \ldots\}$.
Problem 3. Consider the sequence $\left\{a_{n}\right\}$ recurrently defined as $a_{1}=2$ and $a_{n+1}=\frac{1}{3-a_{n}}$.
(1) Assuming that $0 \leq a_{n} \leq 2$ and that the sequence $\left\{a_{n}\right\}$ is decreasing, argue that $\left\{a_{n}\right\}$ is convergent and find its limit.
(2) Can you show that $0 \leq a_{n} \leq 2$ for every natural n ?
(3) Can you show that $\left\{a_{n}\right\}$ is decreasing?

References

[1] J. Stewart: Single Variable Calculus 8th Edition, Cengage Learning, Boston 2015.

