MOCK QUIZ 2

Note: Most of the problems were taken from the textbook [1].

Problem 1. If $a, b \in \mathbb{R}$ such that a, b > 0, compute the limit of the sequence $\{a_n\}$, where

$$a_n = \left(1 + \frac{a}{n}\right)^{\frac{n}{b}}.$$

Solution 1: We can compute the limit of $\{a_n\}$ as follows:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \exp\left(\frac{n}{b} \ln\left(1 + \frac{a}{n}\right)\right) = \exp\left(\lim_{n \to \infty} \frac{n}{b} \ln\left(1 + \frac{a}{n}\right)\right)$$
$$= \exp\left(\lim_{x \to \infty} \frac{\ln\left(\frac{x+a}{x}\right)}{\frac{b}{x}}\right) = \exp\left(\lim_{x \to \infty} \frac{\frac{x+a}{x+a} - \frac{a}{x^2}}{\frac{-b}{x^2}}\right)$$
$$= \exp\left(\lim_{x \to \infty} \frac{a}{b} - \frac{x}{x+a}\right) = e^{\frac{a}{b}}.$$

Solution 2: We can compute the limit of $\{a_n\}$ as follows:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(1 + \frac{a}{n} \right)^{\frac{n}{b}} = \lim_{n \to \infty} \left(\left(1 + \frac{a}{n} \right)^{\frac{n}{a}} \right)^{\frac{a}{b}} = \left(\lim_{n \to \infty} \left(1 + \frac{a}{n} \right)^{\frac{n}{a}} \right)^{\frac{a}{b}} = e^{\frac{a}{b}}.$$

Problem 2. Decide whether the series

(0.1)
$$\sum_{n=2}^{\infty} \ln\left(\frac{n+1}{n}\right)$$

converges. If it is convergent, then find the limit.

Solution: Denoting the *n*-th partial sum of (0.1) by s_n , we can observe that

$$s_n = \sum_{k=2}^n \ln\left(\frac{k+1}{k}\right) = \sum_{k=2}^n \left(\ln(k+1) - \ln k\right) = \ln(n+1) - \ln 2.$$

Therefore

$$\sum_{n=2}^{\infty} \ln\left(\frac{n+1}{n}\right) = \lim_{n \to \infty} \ln(n+1) - \ln 2 = \infty.$$

References

[1] J. Stewart: Single Variable Calculus 8th Edition, Cengage Learning, Boston 2015.