MOCK QUIZ 2

Note: Most of the problems were taken from the textbook [1].
Problem 1. If $a, b \in \mathbb{R}$ such that $a, b>0$, compute the limit of the sequence $\left\{a_{n}\right\}$, where

$$
a_{n}=\left(1+\frac{a}{n}\right)^{\frac{n}{b}}
$$

Solution 1: We can compute the limit of $\left\{a_{n}\right\}$ as follows:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \exp \left(\frac{n}{b} \ln \left(1+\frac{a}{n}\right)\right)=\exp \left(\lim _{n \rightarrow \infty} \frac{n}{b} \ln \left(1+\frac{a}{n}\right)\right) \\
& =\exp \left(\lim _{x \rightarrow \infty} \frac{\ln \left(\frac{x+a}{x}\right)}{\frac{b}{x}}\right)=\exp \left(\lim _{x \rightarrow \infty} \frac{\frac{x}{x+a} \frac{-a}{x^{2}}}{\frac{-b}{x^{2}}}\right) \\
& =\exp \left(\lim _{x \rightarrow \infty} \frac{a}{b} \frac{x}{x+a}\right)=e^{\frac{a}{b}} .
\end{aligned}
$$

Solution 2: We can compute the limit of $\left\{a_{n}\right\}$ as follows:

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(1+\frac{a}{n}\right)^{\frac{n}{b}}=\lim _{n \rightarrow \infty}\left(\left(1+\frac{a}{n}\right)^{\frac{n}{a}}\right)^{\frac{a}{b}}=\left(\lim _{n \rightarrow \infty}\left(1+\frac{a}{n}\right)^{\frac{n}{a}}\right)^{\frac{a}{b}}=e^{\frac{a}{b}}
$$

Problem 2. Decide whether the series

$$
\begin{equation*}
\sum_{n=2}^{\infty} \ln \left(\frac{n+1}{n}\right) \tag{0.1}
\end{equation*}
$$

converges. If it is convergent, then find the limit.
Solution: Denoting the n-th partial sum of (0.1) by s_{n}, we can observe that

$$
s_{n}=\sum_{k=2}^{n} \ln \left(\frac{k+1}{k}\right)=\sum_{k=2}^{n}(\ln (k+1)-\ln k)=\ln (n+1)-\ln 2 .
$$

Therefore

$$
\sum_{n=2}^{\infty} \ln \left(\frac{n+1}{n}\right)=\lim _{n \rightarrow \infty} \ln (n+1)-\ln 2=\infty
$$

References

[1] J. Stewart: Single Variable Calculus 8th Edition, Cengage Learning, Boston 2015.

