
MATH1B: FINAL PRACTICE EXAM TIME: 2 HOURS

Problem 1. Evaluate the following integrals

(a)

∫
dy

16y + 10y ln y + y(ln y)2
(b)

∫
e−x cos 2x dx.

Solution: (a) Taking x = ln y and, therefore, dx = dy/y, we get∫
dy

16y + 10y ln y + y(ln y)2
=

∫
dx

16 + 10x+ x2
=

∫
dx

(x+ 2)(x+ 8)

=
1

6

(∫
dx

x+ 2
− dx

x+ 8

)
=

1

6
ln |x+ 2| − 1

6
ln |x+ 8|+ C

=
1

6
ln |2 + ln y| − 1

6
ln |8 + ln y|+ C.

(b) Integrating by parts taking u = e−x and dv = cos 2xdx, one obtains∫
e−x cos 2x dx =

1

2
e−x sin 2x+

1

2

∫
e−x sin 2x dx.(0.1)

Using integration by parts on the integral in the right-hand side of (0.1) with u = e−x

and dv = sin 2x dx, we have that∫
e−x cos 2x dx =

1

2
e−x sin 2x+

1

2

(
− 1

2
e−x cos 2x− 1

2

∫
e−x cos 2x dx

)
.

Hence, by factoring the integrals in the above equations, we conclude that∫
e−x cos 2x dx =

2

5
e−x sin 2x− 1

5
e−x cos 2x.

�

Problem 2. Decide whether the next integral is divergent or convergent. If it is con-
vergent, evaluate it: ∫ π/2

0

cos θ√
sin θ

dθ.

Solution: Using the definition of improper integral and then the substitution u = sin θ,
it follows that∫ π/2

0

cos θ√
sin θ

dθ = lim
t→0+

∫ π/2

t

cos θ√
sin θ

dθ = lim
t→0+

∫ 1

sin t

du√
u

= lim
t→0+

2
√
u
∣∣1
sin t

= 2.

Therefore the integral is convergent and its limit is 2. �
1



Problem 3. For the function f(x) = 1
4
ex + e−x, argue that the arc length on any

interval has the same value as the area under the curve.

Solution: First, notice that√
1 +

(
f ′(x)

)2
=

√
1 +

(
e2x

16
− 1

2
+ e−2x

)
=

√(
ex

4
+ e−x

)2

= f(x).

Thus, if a < b and Lf ([a, b]) is the arc length of f(x) when a ≤ x ≤ b, then

Lf ([a, b]) =

∫ b

a

√
1 +

(
f ′(x)

)2
dx =

∫ b

a

f(x) dx,

which is the area under curve f(x) from a to b. �

Problem 4. Determine whether the following series is absolutely convergent, condi-
tionally convergent, or divergent:

∞∑
n=1

(−1)n
arctann

n2
.

Solution: Since
∞∑
n=1

∣∣∣∣(−1)n
arctann

n2

∣∣∣∣ =
∞∑
n=1

| arctann|
n2

≤
∞∑
n=1

π/2

n2
,

which converges, by the Comparison Test the given series is absolutely convergent. �

Problem 5. Find the radius of convergence and the interval of convergence of the
following power series:

(a)
∞∑
n=1

(2x− 1)n

5n
√
n

(b)
∞∑
n=2

bn

lnn
(x− a)n, b > 0.

Solution: (a) Since

lim
n→∞

|2x− 1|n+1

5n+1
√
n+ 1

· 5n
√
n

|2x− 1|n
= |2x− 1| lim

n→∞

1

5

√
n

n+ 1
=
|2x− 1|

5
,

it follows by the Ratio Test that radius of convergence is 5/2. Substituting 2x−1 = −5
and 2x− 1 = 5 in the original power series, we can see that

∞∑
n=1

(−1)n
1√
n

and
∞∑
n=1

1√
n

are convergent (by the Alternating Test) and divergent (by the p-test), respectively.
Hence the interval of convergence is [−2, 3).

(b) The solution is similar to part (a): the radius of convergence is 1/b and the
interval of convergence is [a− 1/b, a+ 1/b). �



Problem 6. Find the Taylor series of the following functions:

(a) f(x) =
x2√
2 + x

(b) f(x) = sin2 x.

Solution: (a) Using the Binomial Series,

f(x) =
x2√

2

(
1 +

x

2

)−1/2
=

x2√
2

∞∑
n=0

(
−1/2

n

)
xn

2n

=
x2√

2

∞∑
n=0

(−1)n
1 · 3 · 5 · · · (2n− 1)

2nn!

xn

2n

=
∞∑
n=0

(−1)n
1 · 3 · 5 · · · (2n− 1)

4n
√

2n!
xn+2.

(b) Since sin2 x = (1− cos 2x)/2, using the Taylor series for cos 2x we find that

f(x) =
1

2
− 1

2

∞∑
n=0

(−1)n

(2n)!
(2x)n =

1

2
+
∞∑
n=0

(−1)n−12n−1

(2n)!
xn.

�

Problem 7. Solve the following differential equations:

(a)
dy

dx
= e2xy − y + e2x − 1 (b) t2

dy

dt
+ 3ty =

√
1 + t2, t > 0.

Solution: (a) After factorizing the right-hand side of the differential equation, we
immediately realize that it is a separable equation:

dy

dx
= (e2x − 1)(y + 1).

Therefore

ln |y + 1|+ C =

∫
dy

y + 1
=

∫
(e2x − 1) dx =

1

2
e2x − x.

Hence |y+1| = A exp(e2x/2−x), where A > 0, which is equivalent to y = A exp(e2x/2−
x) − 1 where A 6= 0. Since the constant function y = −1 is also a solution of the
differential equation given, we conclude that the set of solutions can be described as
follows

y = Aee
2x/2−x − 1, where A ∈ R.

(b) Notice that this is a linear differential equation whose integrating factor is

I(t) = e
∫
3/t dt = e3 ln |t| = t3.

Hence (t3y) = t
√

1 + t2, which implies that

t3y =

∫
t
√

1 + t2 dt =
1

2

∫ √
u du =

1

2

∫ √
t dt =

1

3
t3/2 + C.



Thus, the set of solutions is given by

y =
1

3t3
(t3/2 + C), where C ∈ R.

�

Problem 8. Suppose a population growth according to a logistic model with initial
population 1000 and carrying capacity 10, 000. If the population grows to 2500 after
one year, what will the population be after another three years?

Solution: The logistic model is described by the differential equation

dP

dt
= kP

(
1− P

M

)
,

where k is a constant and M is the carrying capacity. In the current case, M = 104.
After solving the integrals in equation resulting from separating variables, namely∫

dP

P (1− P
104

)
=

∫
kdt,

we find that

P (t) =
104

1 + Ae−kt
, where A =

M − P (0)

P (0)
.

Since P (0) = 1000, it follows that A = 9 and

(0.2) P (t) =
104

1 + 9e−kt
.

We can use the fact that P (1) = 2500 to find k since from equation (0.2) we get

k = −1

t
ln

(
1

9

(
104

P (t)
− 1

))
.

Therefore k = ln 3 and so the equation modeling the population under study is

P (t) =
104

1 + 27e−t
,

The population after another three years will be P (4). �

Problem 9. Find the general solution of the following differential equation:

y′′ − 4y′ + 5y = 6e−x.

Solution: The auxiliary equation, z2 − 4z + 5 = 0 has to conjugate complex roots,
namely 2 − i and 2 + i, the set of solutions of the associated homogeneous equation,
y′′ − 4y′ + 5y = 0, is

ae2x cosx+ be2x sinx where a, b ∈ R.



To find a particular solution of the non-homogeneous, substitute y0 = Ae−x in the
initial equation, and solve it to obtain A = 3/5. Hence the set of solutions for the
given differential equation is

3

5
e−x + ae2x cosx+ be2x sinx where a, b ∈ R.

�

Problem 10. Use power series to solve the following initial-value problem:

(0.3) y′′ + xy = 0, y(0) = 1 y′(0) = 0.

Solution: Substituting

y =
∞∑
n=0

anx
n and y′′ =

∞∑
n=2

ann(n− 1)xn−2

in equation (0.3) we obtain

0 =
∞∑
n=2

ann(n− 1)xn−2 + x
∞∑
n=0

anx
n

= 2a2 +
∞∑
n=0

an+3(n+ 3)(n+ 2)xn+1 +
∞∑
n=0

anx
n+1

= 2a2 +
∞∑
n=0

(
an+3(n+ 3)(n+ 2) + an

)
xn+1.

Therefore a2 = 0 and for every n ≥ 0 we can compute every coefficient an+3 in terms
of a0 and a1 by using the formula

an+3 =
−1

(n+ 3)(n+ 2)
an.

Therefore the set of solutions is

y = a0

∞∑
n=0

(−1)n

(3n)1!
x3n + a1

∞∑
n=0

(−1)n

(3n+ 1)2!
x3n+1,

where (3n)1! is the product of all integers from 1 to 3n omitting those that are of the
form 3k + 1, and (3n + 1)2! is the product of all integers from 1 to 3n + 1 omitting
those that are of the form 3k + 2. �


