Problem 1. Evaluate the following integrals
(a) $\int \frac{d y}{16 y+10 y \ln y+y(\ln y)^{2}}$
(b) $\int e^{-x} \cos 2 x d x$.

Solution: (a) Taking $x=\ln y$ and, therefore, $d x=d y / y$, we get

$$
\begin{aligned}
\int \frac{d y}{16 y+10 y \ln y+y(\ln y)^{2}} & =\int \frac{d x}{16+10 x+x^{2}}=\int \frac{d x}{(x+2)(x+8)} \\
& =\frac{1}{6}\left(\int \frac{d x}{x+2}-\frac{d x}{x+8}\right)=\frac{1}{6} \ln |x+2|-\frac{1}{6} \ln |x+8|+C \\
& =\frac{1}{6} \ln |2+\ln y|-\frac{1}{6} \ln |8+\ln y|+C
\end{aligned}
$$

(b) Integrating by parts taking $u=e^{-x}$ and $d v=\cos 2 x d x$, one obtains

$$
\begin{equation*}
\int e^{-x} \cos 2 x d x=\frac{1}{2} e^{-x} \sin 2 x+\frac{1}{2} \int e^{-x} \sin 2 x d x \tag{0.1}
\end{equation*}
$$

Using integration by parts on the integral in the right-hand side of (0.1) with $u=e^{-x}$ and $d v=\sin 2 x d x$, we have that

$$
\int e^{-x} \cos 2 x d x=\frac{1}{2} e^{-x} \sin 2 x+\frac{1}{2}\left(-\frac{1}{2} e^{-x} \cos 2 x-\frac{1}{2} \int e^{-x} \cos 2 x d x\right)
$$

Hence, by factoring the integrals in the above equations, we conclude that

$$
\int e^{-x} \cos 2 x d x=\frac{2}{5} e^{-x} \sin 2 x-\frac{1}{5} e^{-x} \cos 2 x
$$

Problem 2. Decide whether the next integral is divergent or convergent. If it is convergent, evaluate it:

$$
\int_{0}^{\pi / 2} \frac{\cos \theta}{\sqrt{\sin \theta}} d \theta
$$

Solution: Using the definition of improper integral and then the substitution $u=\sin \theta$, it follows that

$$
\int_{0}^{\pi / 2} \frac{\cos \theta}{\sqrt{\sin \theta}} d \theta=\lim _{t \rightarrow 0^{+}} \int_{t}^{\pi / 2} \frac{\cos \theta}{\sqrt{\sin \theta}} d \theta=\lim _{t \rightarrow 0^{+}} \int_{\sin t}^{1} \frac{d u}{\sqrt{u}}=\left.\lim _{t \rightarrow 0^{+}} 2 \sqrt{u}\right|_{\sin t} ^{1}=2
$$

Therefore the integral is convergent and its limit is 2 .

Problem 3. For the function $f(x)=\frac{1}{4} e^{x}+e^{-x}$, argue that the arc length on any interval has the same value as the area under the curve.

Solution: First, notice that

$$
\sqrt{1+\left(f^{\prime}(x)\right)^{2}}=\sqrt{1+\left(\frac{e^{2 x}}{16}-\frac{1}{2}+e^{-2 x}\right)}=\sqrt{\left(\frac{e^{x}}{4}+e^{-x}\right)^{2}}=f(x)
$$

Thus, if $a<b$ and $L_{f}([a, b])$ is the arc length of $f(x)$ when $a \leq x \leq b$, then

$$
L_{f}([a, b])=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x=\int_{a}^{b} f(x) d x
$$

which is the area under curve $f(x)$ from a to b.
Problem 4. Determine whether the following series is absolutely convergent, conditionally convergent, or divergent:

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{\arctan n}{n^{2}}
$$

Solution: Since

$$
\sum_{n=1}^{\infty}\left|(-1)^{n} \frac{\arctan n}{n^{2}}\right|=\sum_{n=1}^{\infty} \frac{|\arctan n|}{n^{2}} \leq \sum_{n=1}^{\infty} \frac{\pi / 2}{n^{2}}
$$

which converges, by the Comparison Test the given series is absolutely convergent.
Problem 5. Find the radius of convergence and the interval of convergence of the following power series:

$$
\text { (a) } \sum_{n=1}^{\infty} \frac{(2 x-1)^{n}}{5^{n} \sqrt{n}} \quad \text { (b) } \sum_{n=2}^{\infty} \frac{b^{n}}{\ln n}(x-a)^{n}, \quad b>0 .
$$

Solution: (a) Since

$$
\lim _{n \rightarrow \infty} \frac{|2 x-1|^{n+1}}{5^{n+1} \sqrt{n+1}} \cdot \frac{5^{n} \sqrt{n}}{|2 x-1|^{n}}=|2 x-1| \lim _{n \rightarrow \infty} \frac{1}{5} \sqrt{\frac{n}{n+1}}=\frac{|2 x-1|}{5}
$$

it follows by the Ratio Test that radius of convergence is $5 / 2$. Substituting $2 x-1=-5$ and $2 x-1=5$ in the original power series, we can see that

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}} \text { and } \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}
$$

are convergent (by the Alternating Test) and divergent (by the p-test), respectively. Hence the interval of convergence is $[-2,3)$.
(b) The solution is similar to part (a): the radius of convergence is $1 / b$ and the interval of convergence is $[a-1 / b, a+1 / b)$.

Problem 6. Find the Taylor series of the following functions:

$$
\text { (a) } f(x)=\frac{x^{2}}{\sqrt{2+x}} \quad \text { (b) } f(x)=\sin ^{2} x
$$

Solution: (a) Using the Binomial Series,

$$
\begin{aligned}
f(x) & =\frac{x^{2}}{\sqrt{2}}\left(1+\frac{x}{2}\right)^{-1 / 2}=\frac{x^{2}}{\sqrt{2}} \sum_{n=0}^{\infty}\binom{-1 / 2}{n} \frac{x^{n}}{2^{n}} \\
& =\frac{x^{2}}{\sqrt{2}} \sum_{n=0}^{\infty}(-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n} n!} \frac{x^{n}}{2^{n}} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{4^{n} \sqrt{2} n!} x^{n+2} .
\end{aligned}
$$

(b) Since $\sin ^{2} x=(1-\cos 2 x) / 2$, using the Taylor series for $\cos 2 x$ we find that

$$
f(x)=\frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}(2 x)^{n}=\frac{1}{2}+\sum_{n=0}^{\infty} \frac{(-1)^{n-1} 2^{n-1}}{(2 n)!} x^{n} .
$$

Problem 7. Solve the following differential equations:

$$
\begin{array}{ll}
\text { (a) } \frac{d y}{d x}=e^{2 x} y-y+e^{2 x}-1 & \text { (b) } t^{2} \frac{d y}{d t}+3 t y=\sqrt{1+t^{2}}, t>0 \text {. }
\end{array}
$$

Solution: (a) After factorizing the right-hand side of the differential equation, we immediately realize that it is a separable equation:

$$
\frac{d y}{d x}=\left(e^{2 x}-1\right)(y+1)
$$

Therefore

$$
\ln |y+1|+C=\int \frac{d y}{y+1}=\int\left(e^{2 x}-1\right) d x=\frac{1}{2} e^{2 x}-x
$$

Hence $|y+1|=A \exp \left(e^{2 x} / 2-x\right)$, where $A>0$, which is equivalent to $y=A \exp \left(e^{2 x} / 2-\right.$ $x)-1$ where $A \neq 0$. Since the constant function $y=-1$ is also a solution of the differential equation given, we conclude that the set of solutions can be described as follows

$$
y=A e^{e^{2 x} / 2-x}-1, \text { where } A \in \mathbb{R}
$$

(b) Notice that this is a linear differential equation whose integrating factor is

$$
I(t)=e^{\int 3 / t d t}=e^{3 \ln |t|}=t^{3} .
$$

Hence $\left(t^{3} y\right)=t \sqrt{1+t^{2}}$, which implies that

$$
t^{3} y=\int t \sqrt{1+t^{2}} d t=\frac{1}{2} \int \sqrt{u} d u=\frac{1}{2} \int \sqrt{t} d t=\frac{1}{3} t^{3 / 2}+C .
$$

Thus, the set of solutions is given by

$$
y=\frac{1}{3 t^{3}}\left(t^{3 / 2}+C\right), \text { where } C \in \mathbb{R}
$$

Problem 8. Suppose a population growth according to a logistic model with initial population 1000 and carrying capacity 10,000. If the population grows to 2500 after one year, what will the population be after another three years?

Solution: The logistic model is described by the differential equation

$$
\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right)
$$

where k is a constant and M is the carrying capacity. In the current case, $M=10^{4}$. After solving the integrals in equation resulting from separating variables, namely

$$
\int \frac{d P}{P\left(1-\frac{P}{10^{4}}\right)}=\int k d t
$$

we find that

$$
P(t)=\frac{10^{4}}{1+A e^{-k t}}, \text { where } A=\frac{M-P(0)}{P(0)} .
$$

Since $P(0)=1000$, it follows that $A=9$ and

$$
\begin{equation*}
P(t)=\frac{10^{4}}{1+9 e^{-k t}} \tag{0.2}
\end{equation*}
$$

We can use the fact that $P(1)=2500$ to find k since from equation (0.2) we get

$$
k=-\frac{1}{t} \ln \left(\frac{1}{9}\left(\frac{10^{4}}{P(t)}-1\right)\right) .
$$

Therefore $k=\ln 3$ and so the equation modeling the population under study is

$$
P(t)=\frac{10^{4}}{1+27 e^{-t}},
$$

The population after another three years will be $P(4)$.
Problem 9. Find the general solution of the following differential equation:

$$
y^{\prime \prime}-4 y^{\prime}+5 y=6 e^{-x}
$$

Solution: The auxiliary equation, $z^{2}-4 z+5=0$ has to conjugate complex roots, namely $2-i$ and $2+i$, the set of solutions of the associated homogeneous equation, $y^{\prime \prime}-4 y^{\prime}+5 y=0$, is

$$
a e^{2 x} \cos x+b e^{2 x} \sin x \text { where } a, b \in \mathbb{R} .
$$

To find a particular solution of the non-homogeneous, substitute $y_{0}=A e^{-x}$ in the initial equation, and solve it to obtain $A=3 / 5$. Hence the set of solutions for the given differential equation is

$$
\frac{3}{5} e^{-x}+a e^{2 x} \cos x+b e^{2 x} \sin x \text { where } a, b \in \mathbb{R}
$$

Problem 10. Use power series to solve the following initial-value problem:

$$
\begin{equation*}
y^{\prime \prime}+x y=0, \quad y(0)=1 \quad y^{\prime}(0)=0 . \tag{0.3}
\end{equation*}
$$

Solution: Substituting

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n} \text { and } y^{\prime \prime}=\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}
$$

in equation (0.3) we obtain

$$
\begin{aligned}
0 & =\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}+x \sum_{n=0}^{\infty} a_{n} x^{n} \\
& =2 a_{2}+\sum_{n=0}^{\infty} a_{n+3}(n+3)(n+2) x^{n+1}+\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& =2 a_{2}+\sum_{n=0}^{\infty}\left(a_{n+3}(n+3)(n+2)+a_{n}\right) x^{n+1} .
\end{aligned}
$$

Therefore $a_{2}=0$ and for every $n \geq 0$ we can compute every coefficient a_{n+3} in terms of a_{0} and a_{1} by using the formula

$$
a_{n+3}=\frac{-1}{(n+3)(n+2)} a_{n} .
$$

Therefore the set of solutions is

$$
y=a_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(3 n)_{1}!} x^{3 n}+a_{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(3 n+1)_{2}!} x^{3 n+1}
$$

where $(3 n)_{1}$! is the product of all integers from 1 to $3 n$ omitting those that are of the form $3 k+1$, and $(3 n+1)_{2}$! is the product of all integers from 1 to $3 n+1$ omitting those that are of the form $3 k+2$.

