IDEAL THEORY AND PRÜFER DOMAINS

FELIX GOTTI

Fractional Ideals

Throughout this section, R is an integral domain.
Definition 1. A fractional ideal J of an integral domain R is an R-submodule of $\mathrm{q}(R)$ for which there exists a nonzero $r \in R$ such that $r J$ is an ideal of R.

So fractional ideals of R are subsets of $\mathrm{qf}(R)$ of the form $\frac{1}{r} I$, where $r \in R$ and I is an ideal of R. A fractional ideal J is called principal if there exists $x \in \mathrm{q}(R)$ such that $J=R x$. It is clear that every ideal (resp., principal ideal) of an integral domain is a fractional ideal (resp., principal fractional ideal). Conversely, if a fractional ideal (resp., principal fractional ideal) of R is contained in R, then it is an ideal (resp., principal ideal).
Proposition 2. For an integral domain R, the following statements hold.
(1) Every finitely generated R-submodule of $\mathrm{q}(R)$ is a fractional ideal.
(2) If R is Noetherian, then every fractional ideal is finitely generated.

Proof. (1) Let J be a finitely generated R-submodule of $\mathrm{qf}(R)$, and take $q_{1}, \ldots, q_{n} \in J$ such that $J=R q_{1}+\cdots+R q_{n}$. For each $i \in \llbracket 1, n \rrbracket$, we can write $q_{i}=r_{i} / s_{i}$ for some $r_{i}, s_{i} \in R$ with $s_{i} \neq 0$. After setting $s=s_{1} \cdots s_{n}$, we see that $s q_{1}, \ldots, s q_{n} \in R$. As a result, $s J=R s q_{1}+\cdots+R s q_{n}$ is an ideal of R. Hence J is a fractional ideal.
(2) Now suppose that R is Noetherian, and let J be a fractional ideal of R. Then $r J$ is an ideal of R for some nonzero $r \in R$ and, because R is Noetherian, we can write $r J=$ $R a_{1}+\cdots+R a_{k}$ for some $a_{1}, \ldots, a_{k} \in R$. Hence the equality $J=R a_{1} / r+\cdots+R a_{k} / r$ holds, and so J is finitely generated.

We can define the sum, product, and quotient (or colon) of two fractional ideals in the same way it is done for ideals and, in this case, we obtain fractional ideals.

Proposition 3. Let R be an integral domain. Then the following statements hold for any fractional ideals J_{1} and J_{2} of R.
(1) $J_{1}+J_{2}$ is a fractional ideal.
(2) $J_{1} J_{2}$ is a fractional ideal.
(3) If J_{1} is finitely generated, then $\left(J_{2}: J_{1}\right)=\left\{q \in \operatorname{qf}(R): q J_{1} \subseteq J_{2}\right\}$ is a fractional ideal.

Proof. Exercise.
Since multiplication of fractional ideals is clearly associative, it follows from Proposition 3 that the set $\mathscr{F}(R)$ of nonzero fractional ideals of R is a commutative semigroup under multiplication with identity element R.

Definition 4. A nonzero fractional ideal of R is called invertible if it is invertible as an element of the semigroup $\mathscr{F}(R)$.

So if J is an invertible fractional ideal of R, then there is only one inverse of J in $\mathscr{F}(R)$, an it is not hard to verify that this inverse is $(R: J)$. We let $\mathscr{I}(R)$ denote the set of invertible elements of $\mathscr{F}(R)$. Clearly, $\mathscr{I}(R)$ is a subgroup of $\mathscr{F}(R)$. It is convenient to let J^{-1} denote the fractional ideal $(R: J)$ even when J is not invertible, and we do so. If J is a nonzero principal fractional ideal and $q \in \mathrm{qf}(R)$ satisfies $J=q R$, then it follows immediately that $J^{-1}=q^{-1} R$, and so $J^{-1} J=R$. Thus, every nonzero principal fractional ideal is invertible, and so the set $\operatorname{Prin}(R)$ consisting of all nonzero principal fractional ideals of R is a subgroup of $\mathscr{I}(R)$. Putting all together we obtain the following proposition.

Proposition 5. If R is an integral domain, then $\mathscr{I}(R)$ is an abelian group, and $\operatorname{Prin}(R)$ is a subgroup of $\mathscr{I}(R)$.

As the following example illustrates, not every finitely generated fractional ideal of an integral domain R is invertible, even when $\operatorname{dim} R=1$.

Example 6. Consider the ring $R=F[x, y] /\left(y^{2}-x^{3}\right)$, where F is a field. The assignments $x \mapsto t^{2}$ and $y \mapsto t^{3}$ determine a ring isomorphism $R \cong F\left[t^{2}, t^{3}\right]$. Identify R with $F\left[t^{2}, t^{3}\right]$, and consider the ideal $I=R t^{2}+R t^{3}$. Then $(R: I)=t^{-1}(R+R t)$ and, therefore, $I(R: I)=R t+R t^{2}+R t^{3} \subseteq R t$. As a result, I is a finitely generated ideal that is not invertible. Finally, observe that $\operatorname{dim} R=1$ because the extension $F\left[t^{2}, t^{3}\right] \subseteq F[t]$ is integral.

Invertible ideals, on the other hand, are finitely generated.
Proposition 7. For an integral domain R, the following statements hold.
(1) Every invertible (fractional) ideal of R is finitely generated.
(2) If R is local, then every invertible (fractional) ideal is principal.

Proof. (1) Let I be an invertible (fractional) ideal of R. Take J to be the fractional ideal satisfying $I J=R$, and write $1=\sum_{i=1}^{n} a_{i} b_{i}$ for $a_{1}, \ldots, a_{n} \in I$ and $b_{1}, \ldots, b_{n} \in J$. Then for every $x \in I$, we see that $x=\sum_{i=1}^{n} a_{i}\left(x b_{i}\right)$. Since $x b_{i} \in R$ for every $i \in \llbracket 1, n \rrbracket$, it follows that $x \in R a_{1}+\cdots+R a_{n}$. So $I \subseteq R a_{1}+\cdots+R a_{n}$. Since the reverse inclusion also holds, I is a finitely generated ideal.
(2) Let R be a local ring with maximal ideal M. Let I be an invertible (fractional) ideal of R with inverse J. As in the previous part, we can write $1=\sum_{i=1}^{n} a_{i} b_{i}$ for
$a_{1}, \ldots, a_{n} \in I$ and $b_{1}, \ldots, b_{n} \in J$. As $1 \notin M$, we see that $a_{j} b_{j} \notin M$ for some $j \in \llbracket 1, n \rrbracket$. Since R is local, $a_{j} b_{j} \in R^{\times}$. Then for every $x \in I$, we obtain that $x=u\left(x b_{j}\right) a_{j} \in R a_{j}$, where $u:=\left(a_{j} b_{j}\right)^{-1} \in R$. Hence $I \subseteq R a_{j}$. Since the reverse inclusion clearly holds, I is a principal ideal.

Therefore we have the following diagram of implications, where F.I. stands for fractional ideal and f.g. for finitely generated.

Principal F.I. $\xlongequal{\Longleftrightarrow \text { local }}$ Invertible F.I. \Longleftrightarrow f.g. F.I. $\xlongequal{\text { Noetherian }}$ F.I.

Recall that an R-module is projective if it is a direct summand of a free R-module. We have seen before that an R-module is projective if and only if there exists a free R-module F and R-module homomorphisms $\alpha: F \rightarrow M$ and $\beta: M \rightarrow F$ such that $\alpha \circ \beta=1_{M}$. We conclude this lecture characterizing invertible ideals in terms of projective modules.

Theorem 8. Let R be an integral domain. Then a nonzero fractional ideal of R is invertible if and only if it is a projective R-module.

Proof. For the direct implication, suppose that J is an invertible fractional ideal. Write $1=\sum_{i=1}^{n} x_{i} y_{i}$ for $x_{1}, \ldots, x_{n} \in J$ and $y_{1}, \ldots, y_{n} \in J^{-1}$. Let F be a free R-module with basis elements m_{1}, \ldots, m_{n}, and let $\alpha: F \rightarrow J$ be the R-module homomorphism induced by the assignments $m_{i} \mapsto x_{i}$ (for every $i \in \llbracket 1, n \rrbracket$). One can easily verify that the map $\beta: J \rightarrow F$ defined by $\beta(x)=\sum_{i=1}^{n}\left(x y_{i}\right) m_{i}$ is an R-module homomorphism. Now we see that

$$
(\alpha \circ \beta)(x)=\alpha\left(\sum_{i=1}^{n}\left(x y_{i}\right) m_{i}\right)=\sum_{i=1}^{n}\left(x y_{i}\right) x_{i}=x
$$

for every $x \in J$. Hence $\alpha \circ \beta=1_{J}$, and so J is a projective R-module.
For the reverse implication, suppose that J is a nonzero fractional ideal of R, which is a projective R-module. Then there exist a free R-module F and R-module homomorphisms $\alpha: F \rightarrow J$ and $\beta: J \rightarrow F$ such that $\alpha \circ \beta=1_{J}$. Let S be a free generating set of F. Now let r be a nonzero element of J, and write $\beta(r)=\sum_{i=1}^{n} r_{i} m_{i}$, where $r_{1}, \ldots, r_{n} \in$ R and m_{1}, \ldots, m_{n} are distinct elements in S. Set $a_{i}=\alpha\left(m_{i}\right)$ and $q_{i}=r_{i} / r \in \mathrm{qf}(R)$ for every $i \in \llbracket 1, n \rrbracket$. For each $x \in J$, we can write $\beta(x)=\sum_{i=1}^{n} x_{i} m_{i}+\sum_{m \in T} c_{m} m$, where $T:=S \backslash\left\{m_{1}, \ldots, m_{n}\right\}$ and $x_{1}, \ldots, x_{n}, c_{m} \in R$ for each $m \in T$ (here $c_{m}=0$ for all but finitely many $m \in T$). After considering coefficients in

$$
\sum_{i=1}^{n}\left(x r_{i}\right) m_{i}=x \beta(r)=r \beta(x)=\sum_{i=1}^{n}\left(r x_{i}\right) m_{i}+\sum_{m \in T}\left(r c_{m}\right) m
$$

we can easily see that $r c_{m}=0$ for all $m \in T$, and so that $q_{i} x=\left(r_{i} / r\right) x=x_{i} \in R$ for every $i \in \llbracket 1, n \rrbracket$. Hence $q_{i} \in J^{-1}$ for each $i \in \llbracket 1, n \rrbracket$. Since $r \neq 0$, from

$$
r=(\alpha \circ \beta)(r)=\alpha\left(\sum_{i=1}^{n} r_{i} m_{i}\right)=\sum_{i=1}^{n} r_{i} \alpha\left(m_{i}\right)=\sum_{i=1}^{n} a_{i} r_{i}=r\left(\sum_{i=1}^{n} a_{i} q_{i}\right)
$$

we obtain that $\sum_{i=1}^{n} a_{i} q_{i}=1$, which implies that $J J^{-1}=R$. Hence one can conclude that J is invertible.

Exercise

Exercise 1. Let R be an integral domain. Prove that the following statements hold for any fractional ideals J_{1} and J_{2} of R.
(1) $J_{1}+J_{2}$ is a fractional ideal.
(2) $J_{1} J_{2}$ is a fractional ideal.
(3) If J_{1} is finitely generated, then $\left(J_{2}: J_{1}\right)=\left\{q \in \mathrm{qf}(R): q J_{1} \subseteq J_{2}\right\}$ is a fractional ideal.

Exercise 2. Show that the arbitrary intersection of fractional ideals is not necessarily a fractional ideal.

Department of Mathematics, Mit, Cambridge, MA 02139
Email address: fgotti@mit.edu

