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Fractional Ideals

Throughout this section, R is an integral domain.

Definition 1. A fractional ideal J of an integral domain R is an R-submodule of qf(R)
for which there exists a nonzero r ∈ R such that rJ is an ideal of R.

So fractional ideals of R are subsets of qf(R) of the form 1
r
I, where r ∈ R and I is

an ideal of R. A fractional ideal J is called principal if there exists x ∈ qf(R) such that
J = Rx. It is clear that every ideal (resp., principal ideal) of an integral domain is a
fractional ideal (resp., principal fractional ideal). Conversely, if a fractional ideal (resp.,
principal fractional ideal) of R is contained in R, then it is an ideal (resp., principal
ideal).

Proposition 2. For an integral domain R, the following statements hold.

(1) Every finitely generated R-submodule of qf(R) is a fractional ideal.

(2) If R is Noetherian, then every fractional ideal is finitely generated.

Proof. (1) Let J be a finitely generated R-submodule of qf(R), and take q1, . . . , qn ∈ J
such that J = Rq1 + · · · + Rqn. For each i ∈ J1, nK, we can write qi = ri/si for some
ri, si ∈ R with si 6= 0. After setting s = s1 · · · sn, we see that sq1, . . . , sqn ∈ R. As a
result, sJ = Rsq1 + · · ·+Rsqn is an ideal of R. Hence J is a fractional ideal.

(2) Now suppose that R is Noetherian, and let J be a fractional ideal of R. Then rJ
is an ideal of R for some nonzero r ∈ R and, because R is Noetherian, we can write rJ =
Ra1 + · · ·+Rak for some a1, . . . , ak ∈ R. Hence the equality J = Ra1/r+ · · ·+Rak/r
holds, and so J is finitely generated. �

We can define the sum, product, and quotient (or colon) of two fractional ideals in
the same way it is done for ideals and, in this case, we obtain fractional ideals.

Proposition 3. Let R be an integral domain. Then the following statements hold for
any fractional ideals J1 and J2 of R.

(1) J1 + J2 is a fractional ideal.

(2) J1J2 is a fractional ideal.

(3) If J1 is finitely generated, then (J2 : J1) = {q ∈ qf(R) : qJ1 ⊆ J2} is a fractional
ideal.
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Proof. Exercise. �

Since multiplication of fractional ideals is clearly associative, it follows from Proposi-
tion 3 that the set F (R) of nonzero fractional ideals of R is a commutative semigroup
under multiplication with identity element R.

Definition 4. A nonzero fractional ideal of R is called invertible if it is invertible as
an element of the semigroup F (R).

So if J is an invertible fractional ideal of R, then there is only one inverse of J in
F (R), an it is not hard to verify that this inverse is (R : J). We let I (R) denote
the set of invertible elements of F (R). Clearly, I (R) is a subgroup of F (R). It is
convenient to let J−1 denote the fractional ideal (R : J) even when J is not invertible,
and we do so. If J is a nonzero principal fractional ideal and q ∈ qf(R) satisfies J = qR,
then it follows immediately that J−1 = q−1R, and so J−1J = R. Thus, every nonzero
principal fractional ideal is invertible, and so the set Prin(R) consisting of all nonzero
principal fractional ideals of R is a subgroup of I (R). Putting all together we obtain
the following proposition.

Proposition 5. If R is an integral domain, then I (R) is an abelian group, and
Prin(R) is a subgroup of I (R).

As the following example illustrates, not every finitely generated fractional ideal of
an integral domain R is invertible, even when dimR = 1.

Example 6. Consider the ring R = F [x, y]/(y2 − x3), where F is a field. The as-
signments x 7→ t2 and y 7→ t3 determine a ring isomorphism R ∼= F [t2, t3]. Identify
R with F [t2, t3], and consider the ideal I = Rt2 + Rt3. Then (R : I) = t−1(R + Rt)
and, therefore, I(R : I) = Rt + Rt2 + Rt3 ⊆ Rt. As a result, I is a finitely generated
ideal that is not invertible. Finally, observe that dimR = 1 because the extension
F [t2, t3] ⊆ F [t] is integral.

Invertible ideals, on the other hand, are finitely generated.

Proposition 7. For an integral domain R, the following statements hold.

(1) Every invertible (fractional) ideal of R is finitely generated.

(2) If R is local, then every invertible (fractional) ideal is principal.

Proof. (1) Let I be an invertible (fractional) ideal of R. Take J to be the fractional
ideal satisfying IJ = R, and write 1 =

∑n
i=1 aibi for a1, . . . , an ∈ I and b1, . . . , bn ∈ J .

Then for every x ∈ I, we see that x =
∑n

i=1 ai(xbi). Since xbi ∈ R for every i ∈ J1, nK,
it follows that x ∈ Ra1 + · · ·+Ran. So I ⊆ Ra1 + · · ·+Ran. Since the reverse inclusion
also holds, I is a finitely generated ideal.

(2) Let R be a local ring with maximal ideal M . Let I be an invertible (fractional)
ideal of R with inverse J . As in the previous part, we can write 1 =

∑n
i=1 aibi for
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a1, . . . , an ∈ I and b1, . . . , bn ∈ J . As 1 /∈M , we see that ajbj /∈M for some j ∈ J1, nK.
Since R is local, ajbj ∈ R×. Then for every x ∈ I, we obtain that x = u(xbj)aj ∈ Raj,
where u := (ajbj)

−1 ∈ R. Hence I ⊆ Raj. Since the reverse inclusion clearly holds, I
is a principal ideal. �

Therefore we have the following diagram of implications, where F.I. stands for frac-
tional ideal and f.g. for finitely generated.

Principal F.I. Invertible F.I. f.g. F.I. F.I.
local

/
Noetherian

Recall that an R-module is projective if it is a direct summand of a free R-module.
We have seen before that an R-module is projective if and only if there exists a free
R-module F and R-module homomorphisms α : F → M and β : M → F such that
α ◦ β = 1M . We conclude this lecture characterizing invertible ideals in terms of
projective modules.

Theorem 8. Let R be an integral domain. Then a nonzero fractional ideal of R is
invertible if and only if it is a projective R-module.

Proof. For the direct implication, suppose that J is an invertible fractional ideal. Write
1 =

∑n
i=1 xiyi for x1, . . . , xn ∈ J and y1, . . . , yn ∈ J−1. Let F be a free R-module with

basis elements m1, . . . ,mn, and let α : F → J be the R-module homomorphism induced
by the assignments mi 7→ xi (for every i ∈ J1, nK). One can easily verify that the map
β : J → F defined by β(x) =

∑n
i=1(xyi)mi is an R-module homomorphism. Now we

see that

(α ◦ β)(x) = α
( n∑

i=1

(xyi)mi

)
=

n∑
i=1

(xyi)xi = x

for every x ∈ J . Hence α ◦ β = 1J , and so J is a projective R-module.

For the reverse implication, suppose that J is a nonzero fractional ideal of R, which
is a projective R-module. Then there exist a free R-module F and R-module homomor-
phisms α : F → J and β : J → F such that α◦β = 1J . Let S be a free generating set of
F . Now let r be a nonzero element of J , and write β(r) =

∑n
i=1 rimi, where r1, . . . , rn ∈

R and m1, . . . ,mn are distinct elements in S. Set ai = α(mi) and qi = ri/r ∈ qf(R) for
every i ∈ J1, nK. For each x ∈ J , we can write β(x) =

∑n
i=1 ximi +

∑
m∈T cmm, where

T := S \ {m1, . . . ,mn} and x1, . . . , xn, cm ∈ R for each m ∈ T (here cm = 0 for all but
finitely many m ∈ T ). After considering coefficients in

n∑
i=1

(xri)mi = xβ(r) = rβ(x) =
n∑

i=1

(rxi)mi +
∑
m∈T

(rcm)m,
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we can easily see that rcm = 0 for all m ∈ T , and so that qix = (ri/r)x = xi ∈ R for
every i ∈ J1, nK. Hence qi ∈ J−1 for each i ∈ J1, nK. Since r 6= 0, from

r = (α ◦ β)(r) = α
( n∑

i=1

rimi

)
=

n∑
i=1

riα(mi) =
n∑

i=1

airi = r
( n∑

i=1

aiqi

)
we obtain that

∑n
i=1 aiqi = 1, which implies that JJ−1 = R. Hence one can conclude

that J is invertible. �

Exercise

Exercise 1. Let R be an integral domain. Prove that the following statements hold for
any fractional ideals J1 and J2 of R.

(1) J1 + J2 is a fractional ideal.

(2) J1J2 is a fractional ideal.

(3) If J1 is finitely generated, then (J2 : J1) = {q ∈ qf(R) : qJ1 ⊆ J2} is a fractional
ideal.

Exercise 2. Show that the arbitrary intersection of fractional ideals is not necessarily
a fractional ideal.
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