IDEAL THEORY AND PRÜFER DOMAINS

FELIX GOTTI

INTEGRAL EXTENSIONS I

We will tacitly assume that all rings in this lecture are commutative with identities. Throughout this lecture, \(R \subseteq S \) is a ring extension, which means that \(R \) is a subring of the ring \(S \). An element \(s \in S \) is \emph{algebraic} (resp., \emph{integral}) over \(R \) if there exists a nonzero polynomial (resp., a monic polynomial) \(f(x) \in R[x] \) such that \(f(s) = 0 \). Although every element of \(S \) that is integral over \(R \) is also algebraic, the converse does not hold in general; for instance, in the extension \(\mathbb{Z} \subseteq \mathbb{Z}[1/2] \), the element \(1/2 \) is algebraic but not integral over \(\mathbb{Z} \). The extension \(R \subseteq S \) is called \emph{integral} and the ring \(S \) is called \emph{integral} over \(R \) provided that every element of \(S \) is integral over \(R \).

Observe that when \(R \) and \(S \) are fields, \(R \subseteq S \) is integral if and only if \(S \) is an algebraic extension of \(R \). We proceed to characterize integral elements.

Theorem 1. Let \(R \subseteq S \) be a ring extension. For \(s \in S \), the following statements are equivalent.

(a) \(s \) is integral over \(R \).
(b) \(R[s] \) is a finitely generated \(R \)-module.
(c) \(s \) is contained in a subring \(T \) of \(S \) that is a finitely generated \(R \)-module.

Proof. (a) \(\Rightarrow \) (b): Since \(s \) is integral over \(R \), there is a monic polynomial \(f(x) \in R[x] \) having \(s \) as a root. Take \(g(s) \in R[s] \) for some \(g(x) \in R[x] \). Because \(f(x) \) is monic, we can write \(g(x) = q(x)f(x) + r(x) \) for \(q(x), r(x) \in R[x] \) with \(\deg r < d := \deg f \). Since \(g(s) = r(s) \), the element \(g(s) \) is a linear combination with coefficients in \(R \) of the elements \(1, s, \ldots, s^{d-1} \). Hence \(R[s] \) can be generated by the set \(\{ s^j : j \in [0, d-1] \} \) as an \(R \)-module.

(b) \(\Rightarrow \) (c): Take \(T = R[s] \).

(c) \(\Rightarrow \) (a): Let \(T \) be the subring described in the statement (c), and let \(\{ t_1, \ldots, t_n \} \) be a generating set of \(T \) as an \(R \)-module. As \(1 \in T \), there are coefficients \(r_1, \ldots, r_n \in R \) such that \(\sum_{i=1}^n r_it_i = 1 \). Since \(s \in T \), we see that \(st_i \in T \) for every \(i \in [1, n] \). Hence, for each \(j \in [1, n] \), we can write \(st_j = \sum_{i=1}^n c_{ij}t_i \), and so

\[
\sum_{i=1}^n (\delta_{ij}s - c_{ij})t_i = 0,
\]
where δ_{ij} is the Kronecker delta (i.e., $\delta_{ij} = 1$ if $i = j$, and $\delta_{ij} = 0$ otherwise). After considering the $n \times n$ matrix $M := (\delta_{ij} s - c_{ij})_{i,j \in [1,n]}$ and the vector $v := (t_1, \ldots, t_n)^T$, we can write the equalities in (0.1) simply as $M v = 0$. By Cramer’s Rule, $(\det M) t_i = 0$ for every $i \in [1,n]$. As a result,

$$\det M = (\det M) \sum_{i=1}^{n} r_i t_i = \sum_{i=1}^{n} r_i (\det M) t_i = 0.$$

After taking C to be the matrix $(c_{ij})_{i,j \in [1,n]}$, one obtains that s is a root of the monic polynomial $\det(xI - C) \in \mathbb{R}[x]$, which is the characteristic polynomial of C. Hence s is integral over R, which concludes the proof. \hfill \square

For a ring extension $R \subseteq S$, we say that S is finite over R provided that S is finitely generated as an R-module.

Corollary 2. Every finite ring extension is integral.

Let us show that the extension of a ring by finitely many integral elements is integral.

Proposition 3. Let $R \subseteq S$ be a ring extension, and let $s_1, \ldots, s_n \in S$ be integral elements over R. Hence $R[s_1, \ldots, s_n]$ is a finitely generated R-module and, therefore, $R \subseteq R[s_1, \ldots, s_n]$ is an integral extension.

Proof. It follows from Theorem 1 that $R[s_1]$ is a finitely generated R-module. Assume further that $R[s_1, \ldots, s_j]$ is a finitely generated module over R for some $j \in [1, n-1]$. Since s_{j+1} is integral over R, it is clearly integral over $R[s_1, \ldots, s_j]$, and it follows from Theorem 1 that $R[s_1, \ldots, s_{j+1}]$ is a finitely generated module over $R[s_1, \ldots, s_j]$. Thus, it follows by transitivity of finitely generated modules that $R[s_1, \ldots, s_{j+1}]$ is a finitely generated R-module. Hence $R[s_1, \ldots, s_n]$ is a finitely generated R-module by induction, and Corollary 2 guarantees that $R[s_1, \ldots, s_n]$ is an integral extension of R. \hfill \square

Now we prove that integrality is transitive.

Proposition 4. Let $R \subseteq S$ and $S \subseteq T$ be ring extensions. If $R \subseteq S$ and $S \subseteq T$ are integral, then $R \subseteq T$ is also integral.

Proof. Take $t \in T$. Since T is integral over S, there is a polynomial $p(x) = x^n + \sum_{i=0}^{n-1} c_i x^i \in S[x]$ for some $n \in \mathbb{N}$ having t as a root. As S is integral over R, the coefficients c_0, \ldots, c_{n-1} are integral over R, and so $R[c_0, \ldots, c_{n-1}]$ is a finitely generated R-module by Proposition 3. Because t is integral over $R[c_0, \ldots, c_{n-1}]$, the ring $R[c_0, \ldots, c_{n-1}, t]$ is also a finitely generated module over $R[c_0, \ldots, c_{n-1}]$. Hence the extension $R \subseteq R[c_0, \ldots, c_{n-1}, t]$ is finite and so integral. In particular, t must be integral over R. Thus, $R \subseteq T$ is an integral extension. \hfill \square

The integrality of an extension ring is preserved by quotients and localizations, as the following two propositions show.
Proposition 5. Let \(R \subseteq S \) be an integral ring extension, and let \(J \) be an ideal of \(S \). Then \(S/J \) is an integral extension of \(R/(J \cap R) \).

Proof. Fix \(s \in S \). As \(R \subseteq S \) is an integral extension, there is a monic polynomial \(x^n + \sum_{i=0}^{n-1} c_i x^i \in R[x] \) having \(s \) as a root. Setting \(\bar{c}_i = c_i + J \), we see that \(x^n + \sum_{i=0}^{n-1} \bar{c}_i x^i \) is a monic polynomial with coefficients in \((R + J)/J \cong R/(J \cap R) \) having \(s + J \) as a root. Hence \(S/J \) is an integral extension of \(R/(J \cap R) \). \(\square \)

Proposition 6. Let \(R \subseteq S \) be an integral ring extension, and let \(M \) be a submonoid of \((R \setminus \{0\}, \cdot)\). Then \(M^{-1}S \) is an integral extension of \(M^{-1}R \).

Proof. Take \(s/m \in M^{-1}S \) with \(s \in S \) and \(m \in M \). Since the extension \(R \subseteq S \) is integral, \(s \) is a root of a monic polynomial \(x^n + \sum_{i=0}^{n-1} c_i x^i \in R[x] \). Therefore

\[
\left(\frac{s}{m} \right)^n + \sum_{i=0}^{n-1} \frac{c_i}{m^{n-i}} \left(\frac{s}{m} \right)^i = m^{-n} \left(s^n + \sum_{i=0}^{n-1} c_is^i \right) = 0,
\]

and so \(s/m \) is a root of the monic polynomial \(x^n + \sum_{i=0}^{n-1} (c_i/m^{n-i})x^i \in M^{-1}R[x] \). As a consequence, \(s/m \) is integral over \(M^{-1}R \). Hence \(M^{-1}S \) is an integral extension of \(M^{-1}R \). \(\square \)

Proposition 7. Let \(R \subseteq S \) be an integral extension of integral domains. Then \(R \) is a field if and only if \(S \) is a field.

Proof. First, assume that \(R \) is a field. Take \(s \in S \setminus \{0\} \). As \(s \) is integral over \(R \), there is a monic polynomial in \(R[x] \) having \(s \) as a root. Assume that, among all such polynomials, \(x^n - \sum_{i=0}^{n-1} c_i x^i \) has minimum degree. Hence \(c_0 \in R^\times \) and, therefore,

\[
s \left(s^{n-1} - \sum_{i=1}^{n-1} c_is^{i-1} \right) c_0^{-1} = 1.
\]

This implies that \(s \) is a unit of \(S \). Hence \(S \) is a field.

Conversely, assume that \(S \) is a field. Take now \(r \in R \setminus \{0\} \). As \(r^{-1} \in S \) and \(S \) is an integral extension of \(R \), there exists a polynomial \(x^m - \sum_{i=0}^{m-1} d_ix^i \in R[x] \) having \(r^{-1} \) as a root, and so \(r^{-m} = \sum_{i=0}^{m-1} d_ir^{-i} \). After multiplying this equality by \(r^{m-1} \), we obtain that \(r^{-1} = \sum_{i=0}^{m-1} d_ir^{m-1-i} \in R \). Thus, \(R \) is a field. \(\square \)

Corollary 8. Let \(R \) be an integral domain. If the extension \(R \subseteq \text{qf}(R) \) is integral, then \(R \) is a field.

The statement of Proposition 7 is not longer true for integral extensions \(R \subseteq S \), where \(S \) is not an integral domain.
Example 9. Let F be a field, and consider the ring $S := F[x]/(x^2)$. Observe that S is a two-dimensional vector space over F; indeed, \{1 + (x^2), x + (x^2)\} is a basis of S over F. Thus, V is an integral extension of F by virtue of Corollary 2. It is clear, however, that S is not even an integral domain; for instance, $x + (x^2)$ is a nonzero zero-divisor of S.

The set \overline{R}_S consisting of all elements of S that are integral over R is an integral extension of R, as we proceed to show.

Proposition 10. Let $R \subseteq S$ be a ring extension. The set \overline{R}_S is an integral extension of R, which contains every subring of S that is integral over R.

Proof. Take $s, t \in \overline{R}_S$. Since s and t are integral over R, the ring extension $R \subseteq R[s, t]$ is integral by Proposition 3. Hence the elements $s \pm t$ and st are integral over R. As a result, \overline{R}_S is a subring of S. On the other hand, it is clear that \overline{R}_S contains every subring of S that is integral over R. \hfill \Box

With notation as in Proposition 10, the ring \overline{R}_S is called the integral closure of R in S. The ring R is integrally closed in S if $\overline{R}_S = R$. The integral closure of an integral domain R, denoted by \overline{R}, is the integral closure of R in its field of fractions $\text{qf}(R)$, and R is called integrally closed if $\overline{R} = R$. It turns out that the integral closure commutes with localization, as the following proposition indicates.

Proposition 11. Let $R \subseteq S$ be a ring extension, and let M be a multiplicative subset of R. Then $M^{-1}\overline{R}_S$ is the integral closure of $M^{-1}R$ in $M^{-1}S$.

Proof. Observe that $M^{-1}\overline{R}_S$ is the subring of $\text{qf}(S)$ generated by M^{-1} and \overline{R}_S. As elements in both sets are integral over $M^{-1}R$, it follows that $M^{-1}\overline{R}_S$ is contained in the integral closure of $M^{-1}R$ in $M^{-1}S$. To argue the reverse inclusion, take an element $q \in M^{-1}S$ that is integral over $M^{-1}R$, and let $x^n + \sum_{i=0}^{n-1} c_i x^i$ be a polynomial with coefficients in $M^{-1}R$ having q as a root. Now take a common denominator $m \in M$ such that $q = s/m$ and $c_i = r_i/m$ for some $s \in S$ and $r_0, \ldots, r_{n-1} \in R$. After multiplying $q^n + \sum_{i=0}^{n-1} c_i q^i = 0$ by m^n, we see that
\[
s^n + \sum_{i=0}^{n-1} (m^{n-i-1} r_i) s^i = m^n \left(q^n + \sum_{i=0}^{n-1} c_i q^i \right) = 0.
\]

Hence s is a root of the monic polynomial $x^n + \sum_{i=0}^{n-1} m^{n-i-1} x^i \in R[x]$ and, therefore, $q = s/m \in M^{-1}\overline{R}_S$. As a consequence, the integral closure of $M^{-1}R$ in $M^{-1}S$ is contained in $M^{-1}\overline{R}_S$, which concludes our proof. \hfill \Box

Corollary 12. Let R be an integral domain, and let S be a multiplicative subset of R. If R is integrally closed, then so is $S^{-1}R$.

For an integral domain, being integrally closed is a local property.
Proposition 13. For an integral domain R, the following statements are equivalent

(a) R is integrally closed.

(b) R_P is integrally closed for every prime ideal P of R.

(c) R_M is integrally closed for every maximal ideal M of R.

Proof. (a) \Rightarrow (b): It follows from Corollary 12.

(b) \Rightarrow (c): This is clear as every maximal ideal is prime.

(c) \Rightarrow (a): Suppose, for the sake of a contradiction, that there exists an element $q \in \text{qf}(R) \setminus R$ that is integral over R. Now consider the set $I := \{r \in R : rq \in R\}$. One can easily see that I is an ideal of R, which is proper because $1/\in I$. Let M be a maximal ideal containing I. Observe now that $q \not\in R_M$; indeed, if $q = r/d$ for some $r \in R$ and $d \in R \setminus M$, then $dq = r \in R$ and so $d \in I \subseteq M$, which is not possible. Finally, the fact that q is integral over R implies that q is also integral over R_M, which contradicts that $q \not\in R_M$. \square

It turns out that every UFD is integrally closed.

Proposition 14. Every UFD is integrally closed.

Proof. Let R be a UFD, and take $r/s \in \text{qf}(R) \setminus \{0\}$ to be an integral element over R, assuming that $r, s \in R$ have no common prime factors. Let $x^n - \sum_{i=0}^{n-1} c_i x^i$ be a polynomial in $R[x]$ having r/s as a root. After multiplying $(r/s)^n = \sum_{i=0}^{n-1} c_i (r/s)^i$ by s^n, one obtains $r^n = s \sum_{i=0}^{n-1} r^i s^{n-1-i}$. Therefore s divides r^n in R. This, together with the fact that R is a UFD, ensures that $s \in R^*$, whence $r/s = rs^{-1} \in R$. Thus, R is integrally closed. \square

Example 15. Since \mathbb{Z} is a UFD, then it is integrally closed by Proposition 14. However, \mathbb{Z} is not integrally closed in \mathbb{C}. Let us further show that the integral closure $R := \mathbb{Z}_\mathbb{C}$ of \mathbb{Z} in \mathbb{C} is not even finitely generated as a \mathbb{Z}-module. To argue this, observe that for every $n \in \mathbb{N}$, the polynomial $p(x) = x^n + 2$ is irreducible over \mathbb{Q} (by Eisenstein Criterion). Thus, taking $r \in R$ to be a root of $p(x)$, we see that $p(x)$ is the minimal polynomial of r and, therefore, the subset $\{1, r, \ldots, r^{n-1}\}$ of R are integrally independent, (i.e., linearly independent over \mathbb{Z}).

Unlike localizations, quotients of integral domains does not preserve the property of being integrally closed.

Example 16. Since $\mathbb{Z}[x]$ is a UFD, it is integrally closed. Consider the ring homomorphism $\mathbb{Z}[x] \to \mathbb{Z}[\sqrt{5}]$ induced by the assignment $x \mapsto \sqrt{5}$. Since $x^2 - 5$ is the minimal polynomial of $\sqrt{5}$ over \mathbb{Q}, it follows that $\mathbb{Z}[x]/(x^2 - 5)$ is isomorphic to $\mathbb{Z}[\sqrt{5}]$, which is not integrally closed (see exercises below).
Exercises

Exercise 1. Let $R \subseteq S$ be a ring extension, and let $\varphi: S \rightarrow S'$ be a surjective ring homomorphism. Prove the following statements.

1. If $s \in S$ is integral over R, then $\varphi(s)$ is integral over $\varphi(R)$.
2. There may be an element $s \in S$ that is algebraic over R such that $\varphi(s)$ is not algebraic over $\varphi(R)$.
3. If $\ker \varphi \subseteq R$ and $\varphi(s)$ is integral over $\varphi(R)$ for some $s \in S$, then s is integral over R.
4. $\varphi(R_S) \subseteq \varphi(R)_{S'}$.
5. The inclusion in the previous statement may be proper.

Exercise 2. Let $R \subseteq S$ be an integral extension. Prove that for any distinct indeterminates x_1, \ldots, x_n over S, the extension $R[x_1, \ldots, x_n] \subseteq S[x_1, \ldots, x_n]$ is also integral.

Exercise 3. Let R be a commutative ring with identity. Prove that the integral closure of R in $R[x]$ is the subring $R+N$ of $R[x]$, where N is the ideal consisting of all nilpotent elements of $R[x]$.

Exercise 4. Let $R \subseteq S$ be an integral ring extension. For any prime ideal Q of S, show that Q is a maximal ideal of S if and only if $Q \cap R$ is a maximal ideal of R.

Exercise 5. Let R be an integral domain, and let K be an algebraic extension of the field of fractions of R. Prove that K is the integral closure of R in K.

Exercise 6. Let d be a squarefree nonzero integer. Prove the following statements.

1. The integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{d})$ is $\mathbb{Z}[\sqrt{d}]$ if $d \equiv 2, 3 \pmod{4}$.
2. The integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{d})$ is $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ if $d \equiv 1 \pmod{4}$.
3. The ring $\mathbb{Z}[\sqrt{d}]$ is integrally closed if and only if $d \equiv 2, 3 \pmod{4}$.

Department of Mathematics, MIT, Cambridge, MA 02139
Email address: fgotti@mit.edu