IDEAL THEORY AND PRÜFER DOMAINS

FELIX GOTTI

Integral Extensions I

We will tacitly assume that all rings in this lecture are commutative with identities. Throughout this lecture, $R \subseteq S$ is a ring extension, which means that R is a subring of the ring S. An element $s \in S$ is algebraic (resp., integral) over R if there exists a nonzero polynomial (resp., a monic polynomial) $f(x) \in R[x]$ such that $f(s)=0$. Although every element of S that is integral over R is also algebraic, the converse does not hold in general; for instance, in the extension $\mathbb{Z} \subseteq \mathbb{Z}[1 / 2]$, the element $1 / 2$ is algebraic but not integral over \mathbb{Z}. The extension $R \subseteq S$ is called integral and the ring S is called integral over R provided that every element of S is integral over R. Observe that when R and S are fields, $R \subseteq S$ is integral if and only if S is an algebraic extension of R. We proceed to characterize integral elements.

Theorem 1. Let $R \subseteq S$ be a ring extension. For $s \in S$, the following statements are equivalent.
(a) s is integral over R.
(b) $R[s]$ is a finitely generated R-module.
(c) s is contained in a subring T of S that is a finitely generated R-module.

Proof. (a) $\Rightarrow(\mathrm{b})$: Since s is integral over R, there is a monic polynomial $f(x) \in R[x]$ having s as a root. Take $g(s) \in R[s]$ for some $g(x) \in R[x]$. Because $f(x)$ is monic, we can write $g(x)=q(x) f(x)+r(x)$ for $q(x), r(x) \in R[x]$ with $\operatorname{deg} r<d:=\operatorname{deg} f$. Since $g(s)=r(s)$, the element $g(s)$ is a linear combination with coefficients in R of the elements $1, s, \ldots, s^{d-1}$. Hence $R[s]$ can be generated by the set $\left\{s^{j}: j \in \llbracket 0, d-1 \rrbracket\right\}$ as an R-module.
(b) $\Rightarrow(\mathrm{c})$: Take $T=R[s]$.
(c) \Rightarrow (a): Let T be the subring described in the statement (c), and let $\left\{t_{1}, \ldots, t_{n}\right\}$ be a generating set of T as an R-module. As $1 \in T$, there are coefficients $r_{1}, \ldots, r_{n} \in R$ such that $\sum_{i=1}^{n} r_{i} t_{i}=1$. Since $s \in T$, we see that $s t_{i} \in T$ for every $i \in \llbracket 1, n \rrbracket$. Hence, for each $j \in \llbracket 1, n \rrbracket$, we can write $s t_{j}=\sum_{i=1}^{n} c_{i j} t_{i}$, and so

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\delta_{i j} s-c_{i j}\right) t_{i}=0 \tag{0.1}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker delta (i.e., $\delta_{i j}=1$ if $i=j$, and $\delta_{i j}=0$ otherwise). After considering the $n \times n$ matrix $M:=\left(\delta_{i j} s-c_{i j}\right)_{i, j \in \llbracket 1, n \rrbracket}$ and the vector $v:=\left(t_{1}, \ldots, t_{n}\right)^{T}$, we can write the equalities in (0.1) simply as $M v=0$. By Cramer's Rule, $(\operatorname{det} M) t_{i}=0$ for every $i \in \llbracket 1, n \rrbracket$. As a result,

$$
\operatorname{det} M=(\operatorname{det} M) \sum_{i=1}^{n} r_{i} t_{i}=\sum_{i=1}^{n} r_{i}(\operatorname{det} M) t_{i}=0
$$

After taking C to be the matrix $\left(c_{i j}\right)_{i, j \in \llbracket 1, n \rrbracket}$, one obtains that s is a root of the monic polynomial $\operatorname{det}(x I-C) \in R[x]$, which is the characteristic polynomial of C. Hence s is integral over R, which concludes the proof.

For a ring extension $R \subseteq S$, we say that S is finite over R provided that S is finitely generated as an R-module.
Corollary 2. Every finite ring extension is integral.
Let us show that the extension of a ring by finitely many integral elements is integral.
Proposition 3. Let $R \subseteq S$ be a ring extension, and let $s_{1}, \ldots, s_{n} \in S$ be integral elements over R. Hence $R\left[s_{1}, \ldots, s_{n}\right]$ is a finitely generated R-module and, therefore, $R \subseteq R\left[s_{1}, \ldots, s_{n}\right]$ is an integral extension.

Proof. It follows from Theorem 1 that $R\left[s_{1}\right]$ is a finitely generated R-module. Assume further that $R\left[s_{1}, \ldots, s_{j}\right]$ is a finitely generated module over R for some $j \in \llbracket 1, n-1 \rrbracket$. Since s_{j+1} is integral over R, it is clearly integral over $R\left[s_{1}, \ldots, s_{j}\right]$, and it follows from Theorem 1 that $R\left[s_{1}, \ldots, s_{j+1}\right]$ is a finitely generated module over $R\left[s_{1}, \ldots, s_{j}\right]$. Thus, it follows by transitivity of finitely generated modules that $R\left[s_{1}, \ldots, s_{j+1}\right]$ is a finitely generated R-module. Hence $R\left[s_{1}, \ldots, s_{n}\right]$ is a finitely generated R-module by induction, and Corollary 2 guarantees that $R\left[s_{1}, \ldots, s_{n}\right]$ is an integral extension of R.

Now we prove that integrality is transitive.
Proposition 4. Let $R \subseteq S$ and $S \subseteq T$ be ring extensions. If $R \subseteq S$ and $S \subseteq T$ are integral, then $R \subseteq T$ is also integral.

Proof. Take $t \in T$. Since T is integral over S, there is a polynomial $p(x)=x^{n}+$ $\sum_{i=0}^{n-1} c_{i} x^{i} \in S[x]$ for some $n \in \mathbb{N}$ having t as a root. As S is integral over R, the coefficients c_{0}, \ldots, c_{n-1} are integral over R, and so $R\left[c_{0}, \ldots, c_{n-1}\right]$ is a finitely generated R-module by Proposition 3. Because t is integral over $R\left[c_{0}, \ldots, c_{n-1}\right]$, the ring $R\left[c_{0}, \ldots, c_{n-1}, t\right]$ is also a finitely generated module over $R\left[c_{0}, \ldots, c_{n-1}\right]$. Hence the extension $R \subseteq R\left[c_{0}, \ldots, c_{n-1}, t\right]$ is finite and so integral. In particular, t must be integral over R. Thus, $R \subseteq T$ is an integral extension.

The integrality of an extension ring is preserved by quotients and localizations, as the following two propositions show.

Proposition 5. Let $R \subseteq S$ be an integral ring extension, and let J be an ideal of S. Then S / J is an integral extension of $R /(J \cap R)$.

Proof. Fix $s \in S$. As $R \subseteq S$ is an integral extension, there is a monic polynomial $x^{n}+\sum_{i=0}^{n-1} c_{i} x^{i} \in R[x]$ having s as a root. Setting $\bar{c}_{i}=c_{i}+J$, we see that $x^{n}+\sum_{i=0}^{n-1} \bar{c}_{i} x^{i}$ is a monic polynomial with coefficients in $(R+J) / J \cong R /(J \cap R)$ having $s+J$ as a root. Hence S / J is an integral extension of $R /(J \cap R)$.

Proposition 6. Let $R \subseteq S$ be an integral ring extension, and let M be a submonoid of $(R \backslash\{0\}, \cdot)$. Then $M^{-1} S$ is an integral extension of $M^{-1} R$.

Proof. Take $s / m \in M^{-1} S$ with $s \in S$ and $m \in M$. Since the extension $R \subseteq S$ is integral, s is a root of a monic polynomial $x^{n}+\sum_{i=0}^{n-1} c_{i} x^{i} \in R[x]$. Therefore

$$
\left(\frac{s}{m}\right)^{n}+\sum_{i=0}^{n-1} \frac{c_{i}}{m^{n-i}}\left(\frac{s}{m}\right)^{i}=m^{-n}\left(s^{n}+\sum_{i=0}^{n-1} c_{i} s^{i}\right)=0
$$

and so s / m is a root of the monic polynomial $x^{n}+\sum_{i=0}^{n-1}\left(c_{i} / m^{n-i}\right) x^{i} \in M^{-1} R[x]$. As a consequence, s / m is integral over $M^{-1} R$. Hence $M^{-1} S$ is an integral extension of $M^{-1} R$.

Proposition 7. Let $R \subseteq S$ be an integral extension of integral domains. Then R is a field if and only if S is a field.

Proof. First, assume that R is a field. Take $s \in S \backslash\{0\}$. As s is integral over R, there is a monic polynomial in $R[x]$ having s as a root. Assume that, among all such polynomials, $x^{n}-\sum_{i=0}^{n-1} c_{i} x^{i}$ has minimum degree. Hence $c_{0} \in R^{\times}$and, therefore,

$$
s\left(s^{n-1}-\sum_{i=1}^{n-1} c_{i} s^{i-1}\right) c_{0}^{-1}=1
$$

This implies that s is a unit of S. Hence S is a field.
Conversely, assume that S is a field. Take now $r \in R \backslash\{0\}$. As $r^{-1} \in S$ and S is an integral extension of R, there exists a polynomial $x^{m}-\sum_{i=0}^{m-1} d_{i} x^{i} \in R[x]$ having r^{-1} as a root, and so $r^{-m}=\sum_{i=0}^{m-1} d_{i} r^{-i}$. After multiplying this equality by r^{m-1}, we obtain that $r^{-1}=\sum_{i=0}^{m-1} d_{i} r^{m-1-i} \in R$. Thus, R is a field.

Corollary 8. Let R be an integral domain. If the extension $R \subseteq \operatorname{qf}(R)$ is integral, then R is a field.

The statement of Proposition 7 is not longer true for integral extensions $R \subseteq S$, where S is not an integral domain.

Example 9. Let F be a field, and consider the ring $S:=F[x] /\left(x^{2}\right)$. Observe that S is a two-dimensional vector space over F; indeed, $\left\{1+\left(x^{2}\right), x+\left(x^{2}\right)\right\}$ is a basis of S over F. Thus, V is an integral extension of F by virtue of Corollary 2. It is clear, however, that S is not even an integral domain; for instance, $x+\left(x^{2}\right)$ is a nonzero zero-divisor of S.

The set \bar{R}_{S} consisting of all elements of S that are integral over R is an integral extension of R, as we proceed to show.

Proposition 10. Let $R \subseteq S$ be a ring extension. The set \bar{R}_{S} is an integral extension of R, which contains every subring of S that is integral over R.
Proof. Take $s, t \in \bar{R}_{S}$. Since s and t are integral over R, the ring extension $R \subseteq R[s, t]$ is integral by Proposition 3. Hence the elements $s \pm t$ and st are integral over R. As a result, \bar{R}_{S} is a subring of S. On the other hand, it is clear that \bar{R}_{S} contains every subring of S that is integral over R.

With notation as in Proposition 10, the ring \bar{R}_{S} is called the integral closure of R in S. The ring R is integrally closed in S if $\bar{R}_{S}=R$. The integral closure of an integral domain R, denoted by \bar{R}, is the integral closure of R in its field of fractions $\mathrm{qf}(R)$, and R is called integrally closed if $\bar{R}=R$. It turns out that the integral closure commutes with localization, as the following proposition indicates.

Proposition 11. Let $R \subseteq S$ be a ring extension, and let M be a multiplicative subset of R. Then $M^{-1} \bar{R}_{S}$ is the integral closure of $M^{-1} R$ in $M^{-1} S$.

Proof. Observe that $M^{-1} \bar{R}_{S}$ is the subring of $\mathrm{qf}(S)$ generated by M^{-1} and \bar{R}_{S}. As elements in both sets are integral over $M^{-1} R$, it follows that $M^{-1} \bar{R}_{S}$ is contained in the integral closure of $M^{-1} R$ in $M^{-1} S$. To argue the reverse inclusion, take an element $q \in M^{-1} S$ that is integral over $M^{-1} R$, and let $x^{n}+\sum_{i=0}^{n-1} c_{i} x^{i}$ be a polynomial with coefficients in $M^{-1} R$ having q as a root. Now take a common denominator $m \in M$ such that $q=s / m$ and $c_{i}=r_{i} / m$ for some $s \in S$ and $r_{0}, \ldots, r_{n-1} \in R$. After multiplying $q^{n}+\sum_{i=0}^{n-1} c_{i} q^{i}=0$ by m^{n}, we see that

$$
s^{n}+\sum_{i=0}^{n-1}\left(m^{n-i-1} r_{i}\right) s^{i}=m^{n}\left(q^{n}+\sum_{i=0}^{n-1} c_{i} q^{i}\right)=0
$$

Hence s is a root of the monic polynomial $x^{n}+\sum_{i=0}^{n-1} m^{n-i-1} x^{i} \in R[x]$ and, therefore, $q=s / m \in M^{-1} \bar{R}_{S}$. As a consequence, the integral closure of $M^{-1} R$ in $M^{-1} S$ is contained in $M^{-1} \bar{R}_{S}$, which concludes our proof.

Corollary 12. Let R be an integral domain, and let S be a multiplicative subset of R. If R is integrally closed, then so is $S^{-1} R$.

For an integral domain, being integrally closed is a local property.

Proposition 13. For an integral domain R, the following statements are equivalent
(a) R is integrally closed.
(b) R_{P} is integrally closed for every prime ideal P of R.
(c) R_{M} is integrally closed for every maximal ideal M of R.

Proof. (a) \Rightarrow (b): It follows from Corollary 12.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$: This is clear as every maximal ideal is prime.
(c) \Rightarrow (a): Suppose, for the sake of a contradiction, that there exists an element $q \in \operatorname{qf}(R) \backslash R$ that is integral over R. Now consider the set $I:=\{r \in R: r q \in R\}$. One can easily see that I is an ideal of R, which is proper because $1 \notin I$. Let M be a maximal ideal containing I. Observe now that $q \notin R_{M}$; indeed, if $q=r / d$ for some $r \in R$ and $d \in R \backslash M$, then $d q=r \in R$ and so $d \in I \subseteq M$, which is not possible. Finally, the fact that q is integral over R implies that q is also integral over R_{M}, which contradicts that $q \notin R_{M}$.

It turns out that every UFD is integrally closed.
Proposition 14. Every UFD is integrally closed.
Proof. Let R be a UFD, and take $r / s \in \mathrm{qf}(R) \backslash\{0\}$ to be an integral element over R, assuming that $r, s \in R$ have no common prime factors. Let $x^{n}-\sum_{i=0}^{n-1} c_{i} x^{i}$ be a polynomial in $R[x]$ having r / s as a root. After multiplying $(r / s)^{n}=\sum_{i=0}^{n-1} c_{i}(r / s)^{i}$ by s^{n}, one obtains $r^{n}=s \sum_{i=0}^{n-1} r^{i} s^{n-1-i}$. Therefore s divides r^{n} in R. This, together with the fact that R is a UFD, ensures that $s \in R^{\times}$, whence $r / s=r s^{-1} \in R$. Thus, R is integrally closed.

Example 15. Since \mathbb{Z} is a UFD, then it is integrally closed by Proposition 14. However, \mathbb{Z} is not integrally closed in \mathbb{C}. Let us further show that the integral closure $R:=\overline{\mathbb{Z}}_{\mathbb{C}}$ of \mathbb{Z} in \mathbb{C} is not even finitely generated as a \mathbb{Z}-module. To argue this, observe that for every $n \in \mathbb{N}$, the polynomial $p(x)=x^{n}+2$ is irreducible over \mathbb{Q} (by Eisenstein Criterion). Thus, taking $r \in R$ to be a root of $p(x)$, we see that $p(x)$ is the minimal polynomial of r and, therefore, the subset $\left\{1, r, \ldots, r^{n-1}\right\}$ of R are integrally independent, (i.e., linearly independent over \mathbb{Z}).

Unlike localizations, quotients of integral domains does not preserve the property of being integrally closed.

Example 16. Since $\mathbb{Z}[x]$ is a UFD, it is integrally closed. Consider the ring homomorphism $\mathbb{Z}[x] \rightarrow \mathbb{Z}[\sqrt{5}]$ induced by the assignment $x \mapsto \sqrt{5}$. Since $x^{2}-5$ is the minimal polynomial of $\sqrt{5}$ over \mathbb{Q}, it follows that $\mathbb{Z}[x] /\left(x^{2}-5\right)$ is isomorphic to $\mathbb{Z}[\sqrt{5}]$, which is not integrally closed (see exercises below).

Exercises

Exercise 1. Let $R \subseteq S$ be a ring extension, and let $\varphi: S \rightarrow S^{\prime}$ be a surjective ring homomorphism. Prove the following statements.
(1) If $s \in S$ is integral over R, then $\varphi(s)$ is integral over $\varphi(R)$.
(2) There may be an element $s \in S$ that is algebraic over R such that $\varphi(s)$ is not algebraic over $\varphi(R)$.
(3) If $\operatorname{ker} \varphi \subseteq R$ and $\varphi(s)$ is integral over $\varphi(R)$ for some $s \in S$, then s is integral over R.
(4) $\varphi\left(\bar{R}_{S}\right) \subseteq \overline{\varphi(R)}_{S^{\prime}}$.
(5) The inclusion in the previous statement may be proper.

Exercise 2. Let $R \subseteq S$ be an integral extension. Prove that for any distinct indeterminates x_{1}, \ldots, x_{n} over S, the extension $R\left[x_{1}, \ldots, x_{n}\right] \subseteq S\left[x_{1}, \ldots, x_{n}\right]$ is also integral.

Exercise 3. Let R be a commutative ring with identity. Prove that the integral closure of R in $R[x]$ is the subring $R+N$ of $R[x]$, where N is the ideal consisting of all nilpotent elements of $R[x]$.

Exercise 4. Let $R \subseteq S$ be an integral ring extension. For any prime ideal Q of S, show that Q is a maximal ideal of S if and only if $Q \cap R$ is a maximal ideal of R.

Exercise 5. Let R be an integral domain, and let K be an algebraic extension of the field of fractions of R. Prove that K is the integral closure of R in K.

Exercise 6. Let d be a squarefree nonzero integer. Prove the following statements.
(1) The integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{d})$ is $\mathbb{Z}[\sqrt{d}]$ if $d \equiv 2,3(\bmod 4)$.
(2) The integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{d})$ is $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ if $d \equiv 1(\bmod 4)$.
(3) The ring $\mathbb{Z}[\sqrt{d}]$ is integrally closed if and only if $d \equiv 2,3(\bmod 4)$.

