IDEAL THEORY AND PRUFER DOMAINS

FELIX GOTTI

INTEGRAL EXTENSIONS I

We will tacitly assume that all rings in this lecture are commutative with identities.
Throughout this lecture, R C S is a ring extension, which means that R is a subring
of the ring S. An element s € S is algebraic (resp., integral) over R if there exists
a nonzero polynomial (resp., a monic polynomial) f(z) € R[z] such that f(s) = 0.
Although every element of S that is integral over R is also algebraic, the converse
does not hold in general; for instance, in the extension Z C Z[1/2], the element 1/2
is algebraic but not integral over Z. The extension R C S is called integral and the
ring S is called integral over R provided that every element of S is integral over R.
Observe that when R and S are fields, R C S is integral if and only if S is an algebraic
extension of R. We proceed to characterize integral elements.

Theorem 1. Let R C S be a ring extension. For s € S, the following statements are
equivalent.

(a) s is integral over R.
(b) Rls] is a finitely generated R-module.
(c) s is contained in a subring T of S that is a finitely generated R-module.

Proof. (a) = (b): Since s is integral over R, there is a monic polynomial f(z) € R[z]
having s as a root. Take g(s) € R[s] for some g(z) € R[x]. Because f(x) is monic,
we can write g(z) = q(z)f(z) + r(x) for ¢(x),r(z) € R[z] with degr < d := deg f.
Since g(s) = r(s), the element g(s) is a linear combination with coefficients in R of the
elements 1,s,...,s%" 1. Hence R[s] can be generated by the set {s’ : j € [0,d — 1]} as
an R-module.

(b) = (c): Take T'= R]s].

(c) = (a): Let T be the subring described in the statement (c), and let {t1,...,¢,}
be a generating set of T" as an R-module. As 1 € T', there are coefficients rq,...,7r, € R
such that >"""  rit; = 1. Since s € T, we see that st; € T for every i € [1,n]. Hence,
for each j € [1,n], we can write st; = >, ¢;;t;, and so
(0.1) Z(@js —¢ij)ti =0,

=1
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where §;; is the Kronecker delta (i.e., 6;; = 1 if i = j, and §;; = 0 otherwise). After
considering the n x n matrix M := (0;;s — ¢;j)ije1,n] and the vector v := (t1,...,¢,)7,
we can write the equalities in (0.1) simply as Mv = 0. By Cramer’s Rule, (det M)t; = 0
for every ¢ € [1,n]. As a result,
det M = (det M) Zriti = Zri(det M)t; = 0.
i=1 i=1

After taking C' to be the matrix (c;;)i jei,n], one obtains that s is a root of the monic
polynomial det(xI — C') € R[x], which is the characteristic polynomial of C'. Hence s
is integral over R, which concludes the proof. 0

For a ring extension R C S, we say that S is finite over R provided that S is finitely
generated as an R-module.

Corollary 2. Every finite ring extension is integral.

Let us show that the extension of a ring by finitely many integral elements is integral.

Proposition 3. Let R C S be a ring extension, and let si,...,s, € S be integral
elements over R. Hence R[sy,...,S,] is a finitely generated R-module and, therefore,
R C R[s1,..., Sy, is an integral extension.

Proof. Tt follows from Theorem 1 that R[s;] is a finitely generated R-module. Assume
further that R[si,...,s;] is a finitely generated module over R for some j € [1,n —1].
Since s;41 is integral over R, it is clearly integral over R[sy, ..., s;], and it follows from
Theorem 1 that R[sy, ..., S;+1] is a finitely generated module over R[sy,...,s;|. Thus,
it follows by transitivity of finitely generated modules that R[sq,...,s;41] is a finitely
generated R-module. Hence R[sy,. .., s,] is a finitely generated R-module by induction,
and Corollary 2 guarantees that R[sy,...,s,| is an integral extension of R. 0

Now we prove that integrality is transitive.

Proposition 4. Let R C S and S C T be ring extensions. If R C S and S C T are
integral, then R C T s also integral.

Proof. Take t € T. Since T is integral over S, there is a polynomial p(z) = 2" +
S cir' € S[a] for some n € N having ¢ as a root. As S is integral over R, the
coefficients ¢, ..., c,_1 are integral over R, and so R|cy,...,c, 1] is a finitely gener-
ated R-module by Proposition 3. Because t is integral over R|co,...,c,—1], the ring
Rlcg, ..., cn-1,t] is also a finitely generated module over R[co, ..., ¢,—1]. Hence the ex-
tension R C R|co, ..., ¢y1,t] is finite and so integral. In particular, ¢ must be integral

over R. Thus, R C T'is an integral extension. O

The integrality of an extension ring is preserved by quotients and localizations, as
the following two propositions show.
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Proposition 5. Let R C S be an integral ring extension, and let J be an ideal of S.
Then S/J is an integral extension of R/(J N R).

Proof. Fix s € S. As R C S is an integral extension, there is a monic polynomial
2"+ 37 ¢t € Rlz] having s as a toot. Setting & = ¢;+.J, we see that 2"+ > G
is a monic polynomial with coefficients in (R+ J)/J = R/(J N R) having s + J as a

root. Hence S/J is an integral extension of R/(J N R). O

Proposition 6. Let R C S be an integral ring extension, and let M be a submonoid
of (R\ {0},-). Then M~'S is an integral extension of MR,

Proof. Take s/m € M~'S with s € S and m € M. Since the extension R C S is
integral, s is a root of a monic polynomial 2" + S~ ¢;z* € R[z]. Therefore

n—1 n—1
G S ) (o B o

and so s/m is a root of the monic polynomial 2 + 37! (¢;/m"")a* € M~'R[z]. As
a consequence, s/m is integral over M~*R. Hence M 1S is an integral extension of
M~'R. 0

Proposition 7. Let R C S be an integral extension of integral domains. Then R is a
field if and only iof S is a field.

Proof. First, assume that R is a field. Take s € S\ {0}. As s is integral over R,
there is a monic polynomial in R[z] having s as a root. Assume that, among all such
polynomials, 2™ — 32" ¢;#* has minimum degree. Hence ¢y € R* and, therefore,

n—1
5(5”_1 — Zcisi_l)cal =1
i=1
This implies that s is a unit of S. Hence S is a field.

Conversely, assume that S is a field. Take now r € R\ {0}. Asr™' € S and S is
an integral extension of R, there exists a polynomial 2™ — "7 " d;z € R[z] having
r~! as a root, and so r™™ = Z?:ol d;r~t. After multiplying this equality by ™!, we
obtain that r—* = > ' ™1~ € R. Thus, R is a field. O

Corollary 8. Let R be an integral domain. If the extension R C qf(R) is integral,
then R is a field.

The statement of Proposition 7 is not longer true for integral extensions R C S,
where S is not an integral domain.
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Example 9. Let F be a field, and consider the ring S := F|[x]/(2?). Observe that S
is a two-dimensional vector space over F; indeed, {1 + (2?),z + (2?)} is a basis of S
over F'. Thus, V is an integral extension of F' by virtue of Corollary 2. It is clear,
however, that S is not even an integral domain; for instance, x + (2?) is a nonzero
zero-divisor of S.

The set Rg consisting of all elements of S that are integral over R is an integral
extension of R, as we proceed to show.

Proposition 10. Let R C S be a ring extension. The set Rg is an integral extension
of R, which contains every subring of S that is integral over R.

Proof. Take s,t € Rg. Since s and ¢ are integral over R, the ring extension R C R[s, ]
is integral by Proposition 3. Hence the elements s +¢ and st are integral over R. As
a result, Rg is a subring of S. On the other hand, it is clear that Rg contains every
subring of S that is integral over R. O

With notation as in Proposition 10, the ring Rg is called the integral closure of R
in S. The ring R is integrally closed in S if Rg = R. The integral closure of an
integral domain R, denoted by R, is the integral closure of R in its field of fractions
af(R), and R is called integrally closed if R = R. It turns out that the integral closure
commutes with localization, as the following proposition indicates.

Proposition 11. Let R C S be a ring extension, and let M be a multiplicative subset
of R. Then M~'Rg is the integral closure of M~'R in M~1S.

Proof. Observe that M 'Ry is the subring of qf(S) generated by M~! and Rg. As
elements in both sets are integral over M 'R, it follows that M ~'Ryg is contained in
the integral closure of M 'R in M~1S. To argue the reverse inclusion, take an element
g € M~'S that is integral over M 'R, and let 2" + ZZ o ¢ix' be a polynomial with
coefficients in M ~! R having ¢ as a root. Now take a common denominator m € M such
that ¢ = s/m and ¢; = r;/m for some s € S and r¢,...,r,_1 € R. After multiplying
¢+ "o ¢iq" = 0 by m", we see that

—_

n—

n—1
"+ Y (m" T hr)st =m” <q” + Z cl-qi) = 0.

i

Il
o

Hence s is a root of the monic polynomial 2" + 37" "m"~*~1z% € R[z] and, therefore,
= s/m € M~'Rg. As a consequence, the integral closure of M~'R in M~'S is
Contained in M~'Rg, which concludes our proof. 0

Corollary 12. Let R be an integral domain, and let S be a multiplicative subset of R.
If R is integrally closed, then so is ST'R.

For an integral domain, being integrally closed is a local property.
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Proposition 13. For an integral domain R, the following statements are equivalent
(a) R is integrally closed.
(b) Rp is integrally closed for every prime ideal P of R.
(¢) Ry is integrally closed for every mazximal ideal M of R.

Proof. (a) = (b): It follows from Corollary 12.
(b) = (c): This is clear as every maximal ideal is prime.

(c) = (a): Suppose, for the sake of a contradiction, that there exists an element
q € qf(R) \ R that is integral over R. Now consider the set I := {r € R : rq € R}.
One can easily see that [ is an ideal of R, which is proper because 1 ¢ I. Let M be
a maximal ideal containing /. Observe now that ¢ ¢ Ry/; indeed, if ¢ = r/d for some
r€ Randd € R\ M, then dg =r € R and so d € I C M, which is not possible.
Finally, the fact that q is integral over R implies that ¢ is also integral over R,;, which
contradicts that ¢ ¢ Ry. O

It turns out that every UFD is integrally closed.
Proposition 14. Every UFD is integrally closed.

Proof. Let R be a UFD, and take r/s € qf(R) \ {0} to be an integral element over R,
assuming that r,s € R have no common prime factors. Let x" — 2;:01 c;xt be a
polynomial in R[z] having /s as a root. After multiplying (/s)" = 327 ci(r/s) by
s™, one obtains " = s Z?;[)l ris"~1=% Therefore s divides ™ in R. This, together with
the fact that R is a UFD, ensures that s € R*, whence r/s = rs~! € R. Thus, R is
integrally closed. O

Example 15. Since Z is a UFD, then it is integrally closed by Proposition 14. How-
ever, Z is not integrally closed in C. Let us further show that the integral closure
R := Z¢ of Z in C is not even finitely generated as a Z-module. To argue this, ob-
serve that for every n € N, the polynomial p(z) = 2" + 2 is irreducible over Q (by
Eisenstein Criterion). Thus, taking r € R to be a root of p(x), we see that p(z) is the
minimal polynomial of 7 and, therefore, the subset {1,7,...,7"1} of R are integrally
independent, (i.e., linearly independent over Z).

Unlike localizations, quotients of integral domains does not preserve the property of
being integrally closed.

Example 16. Since Z[z| is a UFD, it is integrally closed. Consider the ring homomor-
phism Z[z] — Z[v/5] induced by the assignment z + /5. Since 22 — 5 is the minimal
polynomial of v/5 over Q, it follows that Z[z]/(x? — 5) is isomorphic to Z[v/5], which
is not integrally closed (see exercises below).
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EXERCISES

Exercise 1. Let R C S be a ring extension, and let p: S — S’ be a surjective ring
homomorphism. Prove the following statements.

(1) If s € S is integral over R, then ¢(s) is integral over ¢(R).
(2) There may be an element s € S that is algebraic over R such that o(s) is not
algebraic over p(R).

(3) If kero C R and @(s) is integral over (R) for some s € S, then s is integral
over R.

(4) ¢(Rs) € p(R)g-
(5) The inclusion in the previous statement may be proper.

Exercise 2. Let R C S be an integral extension. Prove that for any distinct indeter-
minates x1,...,x, over S, the extension R[ry,...,x,] C S[xq,...,x,] is also integral.

Exercise 3. Let R be a commutative ring with identity. Prove that the integral closure
of R in R[x] is the subring R+ N of R[z|, where N is the ideal consisting of all nilpotent
elements of R[z].

Exercise 4. Let R C S be an integral ring extension. For any prime ideal Q) of S,
show that @) is a maximal ideal of S if and only if Q N R is a maximal ideal of R.

Exercise 5. Let R be an integral domain, and let K be an algebraic extension of the
field of fractions of R. Prove that K is the integral closure of R in K.

Exercise 6. Let d be a squarefree nonzero integer. Prove the following statements.
(1) The integral closure of Z in Q(v/d) is Z[\/d) if d = 2,3 (mod 4).
(2) The integral closure of Z in Q(\/d) is Z[%ﬁ} ifd=1 (mod 4).
(3) The ring Z[/d] is integrally closed if and only if d = 2,3 (mod 4).
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