
IDEAL THEORY IN PRÜFER DOMAINS

FELIX GOTTI

Krull’s Theorems and Artin-Rees Lemma

The purpose of this lecture is to prove three important results for Noetherian rings
(two of them due to Wolfgang Krull); these are Krull’s Intersection Theorem, Artin-
Rees Lemma, and Krull’s Principal Ideal Theorem.

Krull’s Intersection Theorem. The following proposition is a version of Krull Inter-
section Theorem for Noetherian rings. The proof that we discuss does not use primary
decomposition, and was given by H. Perdry in [2].

Proposition 1. Let R be a commutative ring with identity that is Noetherian, and
let I be a ideal of R. Then there exists r ∈ I such that (1− r)

⋂
n∈N I

n = (0).

Proof. Write I = (a1, . . . , a`) and
⋂

n∈N I
n = (b1, . . . , bk). Now fix j ∈ J1, kK. For every

n ∈ N, the fact that bj ∈ In guarantees the existence of a homogeneous polynomial
pn ∈ R[x1, . . . , x`] of degree n such that bj = pn(a1, . . . , a`). For each n ∈ N, consider
the ideal Jn = (p1, . . . , pn) of R[x1, . . . , x`]. Since the chain of ideals (Jn)n∈N is ascending
and R[x1, . . . , x`] is a Noetherian ring by Hilbert Basis Theorem, there is an n ∈ N such
that Jn+1 = Jn. In particular, pn+1 belongs to Jn. As a result, we can take polynomials
q1, . . . , qn ∈ R[x1, . . . , x`] such that pn+1 =

∑n
i=1 qipn+1−i. Observe that there is no loss

of generality in assuming that qd is a homogeneous polynomial of degree d for every
d ∈ J1, nK, and we do so. After evaluating both sides of pn+1 =

∑n
i=1 qipn+1−i at

(x1, . . . , x`) = (a1, . . . , a`), we see that

bj = (q1(a1, . . . , a`) + · · ·+ qn+1(a1, . . . , a`))bj = rjbj

for some rj ∈ I (here we have used the fact that q1, . . . , qn+1 are homogeneous poly-
nomials of positive degree). Therefore, for every j ∈ J1, kK, we have found rj ∈ I
satisfying that (1− rj)bj = 0. Then the product (1− r1) · · · (1− rk) annihilates bj for
every j ∈ J1, kK. Hence (1− r)

⋂
n∈N I

n = (0) when r = 1− (1− r1) · · · (1− rk). �

The previous proposition is specially useful in the context of integral domains and
local rings.

Theorem 2 (Krull’s Intersection Theorem). Let R be a Noetherian domain or a Noe-
therian local ring, and let I be a proper ideal of R. Then

⋂
n∈N I

n = (0).
1



2 F. GOTTI

Proof. When R is an integral domain, the statement of the theorem follows immediately
from Proposition 1. On the other hand, suppose that R is a local ring with maximal
ideal M , and set J =

⋂
n∈NM

n. Since R is Noetherian, J is a finitely generated
R-module. As MJ = J , it follows from Nakayama’s Lemma that J = (0). Hence⋂

n∈N I
n ⊆

⋂
n∈N M

n = (0). �

The conclusion of Krull’s Intersection Theorem does not hold, in general, for Noe-
therian rings, as the following example indicates.

Example 3. Consider the ring R = Z/6Z. Since R is finite, it is Noetherian. On the
other hand, R is not local (both (2 + 6Z) and (3 + 6Z) are maximal ideals of R) and R
is not an integral domain (2 + 6Z and 3 + 6Z are both nonzero zero-divisors). Finally,
we observe that I = (2 + 6Z) is an idempotent ideal and, therefore, 2 + 6Z ∈

⋂
n∈N I

n.

Artin-Rees Lemma. We proceed to prove the Artin-Rees Lemma, which also deals
with ideals in Noetherian rings.

Theorem 4 (Artin-Rees Lemma). Let R be a Noetherian ring, and let I, J , and K be
ideals of R. Then there exist m ∈ N such that

(0.1) InJ ∩K = In−m(ImJ ∩K)

for every n ∈ N with n ≥ m.

Proof. Write I = (a1, . . . , ak). For each n ∈ N0, let Hn be the set consisting of homo-
geneous polynomials f ∈ R[x1, . . . , xn] of degree n with f(a1, . . . , ak) ∈ InJ ∩K. Now
let I ′ be the homogeneous ideal generated by the set H :=

⋃
n∈N0

Hn. In light of Hilbert
Basis Theorem, we can write I ′ = (f1, . . . , ft) for some f1, . . . , ft ∈ R[x1, . . . , xk].
Since I ′ is a homogeneous ideal, we can assume that f1, . . . , ft are homogeneous poly-
nomials. For each i ∈ J1, tK, set di := deg fi, and then set m = max{di : i ∈ J1, tK} and
fix n ∈ N with n ≥ m.

To argue the inclusion InJ ∩K = In−m(ImJ ∩K), take a ∈ InJ ∩K. As a ∈ In, we
can pick a polynomial f ∈ Hn such that a = f(a1, . . . , ak). Now write f =

∑t
i=1 gifi

for some g1, . . . , gt ∈ R[x1, . . . , xt]. Since f is homogeneous of degree n, there is no loss
of generality in assuming that gi is homogeneous of degree n − di for every i ∈ J1, tK.
Then the fact that

a = f(a1, . . . , ak) =
t∑

i=1

gi(a1, . . . , ak)fi(a1, . . . , ak) ∈
t∑

i=1

In−di(IdiJ ∩K),

along with

t∑
i=1

In−di(IdiJ ∩K) ⊆ In−m
t∑

i=1

(ImJ) ∩ Im−diK) ⊆ In−m(ImJ ∩K),
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allows us to conclude that a ∈ In−m(ImJ ∩ K). Hence the direct inclusion of (0.1)
holds. The reverse inclusion follows easily: In−m(ImJ∩K) ⊆ InJ∩In−mK ⊆ InJ∩K.
Hence (0.1) holds for every n ≥ m. �

Krull’s Principal Ideal Theorem. Our next goal is to prove Krull’s Principal Ideal
Theorem (Krull’s Hauptidealsatz), which states that, in a Noetherian ring, every min-
imal prime ideal over a principal ideal has height at most one.

Let R be a commutative ring with identity. The height of a prime ideal P of R,
which is denoted by ht(P ), is the maximum h ∈ N0 ∪ {∞} such that there is a chain

P0 ( P1 ( · · · ( Ph = P,

where P0, . . . , Ph are prime ideals of R. Given an ideal I of R, recall that a minimal
prime ideal over I is a prime ideal P containing I such that for every prime ideal Q
with I ⊆ Q ⊆ P the equality Q = P holds. Finally, we need the following lemma.

Lemma 5. Let R be a Noetherian ring, and let P be a prime ideal of R. For every
n ∈ N, set P (n) := P nRP ∩R. Then P (n)RP = P nRP .

Proof. Exercise. �

The ideal P (n) in the previous lemma is called the n-th symbolic power of P . We are
now in a position to prove Krull’s Principal Ideal Theorem.

Theorem 6 (Krull’s Principal Ideal Theorem). Let R be a Noetherian domain, and
let I be a proper principal ideal of R. Then each minimal prime ideal over I has height
at most one.

Proof. Let P be a minimal prime ideal over I. After localizing R at P if necessary, all
the relevant data is preserved and we can further assume that R is a local ring with
maximal ideal P . Suppose, by way of contradiction, that ht(P ) ≥ 2. Let Q0 and Q
be prime ideals in R such that Q0 ( Q ( P . Observe that if we replace R by R/Q0,
then we can assume that R is a Noetherian domain that is local with maximal ideal P
satisfying that P is a minimal prime over I and (0) ( Q ( P .

Take a ∈ R such that I = Ra and, for each n ∈ N, set Q(n) = QnRQ ∩ R. Observe
that Q(n) is a Q-primary ideal for every n ∈ N. The quotient ring R/Ra has only one
prime ideal, namely, P/Ra. Therefore it is a zero-dimensional Noetherian (local) ring,
and so it is also an Artinian ring. As a result, the chain of ideals ((Q(n)+Ra)/Ra)n∈N of
R/Ra eventually stabilizes, and so there is an N ∈ N such that Q(n)+Ra = Q(n+1)+Ra
for every n ≥ N .

Fix n ≥ N , and then take qn ∈ Q(n). Since Q(n) ⊆ Q(n+1) + Ra, we can write
qn = qn+1 + ra for some qn+1 ∈ Q(n+1) and r ∈ R. Note that ra = qn − qn+1 ∈ Q(n). In
addition, a /∈ Q because P is a minimal prime over Ra in R. This, along with the fact
that Q(n) is Q-primary, ensures that r ∈ Q(n). As a consequence, Q(n) ⊆ Q(n+1)+Q(n)a,
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which implies that Q(n) = Q(n+1) + Q(n)a. Therefore the R-module M = Q(n)/Q(n+1)

satisfies that M = aM . So it follows from Nakayama’s Lemma that M = {0}, whence
Q(n)/Q(n+1) = {0}.

Thus, for each n ≥ N the equality Q(n) = Q(N) holds, and so QnRQ = QNRQ by
virtue of Lemma 5. Take a nonzero q ∈ Q. As R is an integral domain, qN is a nonzero
element of QnRQ for every n ∈ N. Now since RQ is a Noetherian local ring with
maximal ideal QRQ, the fact that qN ∈

⋂
n∈N Q

nRQ generates a contradiction with
Krull’s Intersection Theorem, which completes the proof. �

The following related statement follows as a consequence of Krull’s Principal Ideal
Theorem.

Corollary 7. Let R be a Noetherian ring, and suppose that a ∈ R is not a zero-divisor.
Prove that ht(P ) = 1 for every minimal prime ideal over Ra.

Proof. Exercise. �

Exercises

Exercises 1 (Nagata’s Idealization Trick). Let R be any commutative ring identity,
and let M be a module over R. For the abelian group S := R×M , prove the following
statements.

(1) S is a commutative ring with identity under the multiplication operation

(r1,m1)(r2,m2) := (r1r2, r1m2 + r2m1).

(2) I := {0} ×M is an ideal of S satisfying that S/I ∼= R and I2 = (0).

(3) Every prime ideal of S has the form P ×M for some prime ideal P of R.

(4) S is a local ring provided that R is a local ring.

(5) S is Noetherian provided that both R and M are Noetherian.

Exercises 2 (Krull’s Intersection Theorem for Modules). Let R be a Noetherian local
ring with maximal ideal P , and let M be a finitely generated module over R. Prove
that

⋂
n∈N P

nM = 0. [Hint: Use Nagata’s Idealization Trick.]

Exercises 3. Let R be a Noetherian ring, and let P be a prime ideal of R. Prove that
P (n)RP = P nRP for every n ∈ N.

Exercises 4. Let R be a Noetherian ring, and suppose that a ∈ R is not a zero-divisor.
Prove that ht(P ) = 1 for every minimal prime ideal over Ra. [Hint: Argue that in a
Noetherian ring every minimal prime ideal consists of zero-divisors.]
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