
IDEAL THEORY AND PRÜFER DOMAINS

FELIX GOTTI

Overrings of One-dimensional Noetherian Rings

The main purpose of this lecture is to prove that every overring of a one-dimensional
Noetherian domain is again one-dimensional and Noetherian. Throughout this lecture,
every ring is assumed to be commutative with an identity element.

Modules Over Noetherian Rings. In this subsection, we will established two re-
sults related to the set of annihilator of a finitely generated module over a Noetherian
ring. For an R-module M , recall that Ann(m) = {r ∈ R : rm = 0} is called the
annihilator of m for every m ∈ M and Ann(M) = {r ∈ R : rM = 0} is called the
annihilator of M . In this subsection we let Z(M) denote the set

⋃
m∈M\{0}Ann(m).

We need the following lemma.

Lemma 1. Let M be a nonzero R-module. Then the following statements hold.

(1) If P is maximal in the set {Ann(m) : m ∈M \ {0}}, then P is prime.

(2) Every prime ideal minimal over Ann(M) belongs to Z(M).

Proof. (1) Let P = Ann(m) be maximal in the set A = {Ann(m) : m ∈M \{0}}, and
take r, s ∈ R such that rs ∈ P . Then r(sm) = 0. If sm = 0, then s ∈ P . Otherwise,
Ann(sm) is an ideal in A containing r. Since P ⊆ Ann(sm), the maximality of P
ensures that r ∈ Ann(sm) = P . Thus, the ideal P is prime.

(2) Let P be a prime ideal minimal over Ann(M). Consider the multiplicative
subset S := {rt : r /∈ Z(M) and t /∈ P}. Note that R \ S ⊆ Z(M). Suppose, by way
of contradiction, that S ∩ Ann(M) is nonempty and take rt ∈ Ann(M) ∩ S for some
r ∈ R \ Z(M) and t ∈ R \ P . Then rtM = 0. As r /∈ Z(M), the equality tM = 0
and so t ∈ Ann(M) ⊆ P , which is a contradiction. Thus, S is disjoint from Ann(M).
Let Q be maximal among all the ideals containing Ann(M) and disjoint from S. Then
Q ⊆ Z(M) and Ann(M) ⊆ Q ⊆ P . It follows now from the minimality of P that
Q = P and, therefore, we can conclude that P ⊆ Z(M). �

As we proceed to argue, in a zero-dimensional ring, every element that is not a
zero-divisor must be a unit.

Proposition 2. Let R be a zero-dimensional commutative ring with identity. If r is
not a zero-divisor, then r ∈ R×.
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Proof. Suppose that r is not a zero-divisor. Considering R as a module over itself, we
see that r /∈ Z(R) and Ann(R) = 0. Since R is zero-dimensional, every maximal ideal
of R must be a minimal prime ideal over Ann(R) and so must be included in Z(R) by
part (2) of Lemma 1. Hence r is not contained in any maximal ideal and, therefore, r
must be a unit. �

Proposition 3. Let R be a Noetherian ring and let M be a finitely generated R-module.
Then there are only finitely many ideals of R that are maximal in Z(M). Moreover,
each of these ideals is a prime ideal of the form Ann(m) for some nonzero m ∈M .

Proof. Since R is Noetherian and M is finitely generated, M is a Noetherian R-module.
Let M be the set of maximal elements in

{
Ann(m) : m ∈ M \ {0}

}
. We know that

every ideal in M is a prime ideal, and it is clear that the set Z of elements of R
annihilating some nonzero element of M is the union of the prime ideals in M . Write
M = {Ann(m) : m ∈ S} for a subset S of M , and let us verify that M is finite.
Let N denote the R-submodule of M spanned by S. As M is Noetherian, N is finitely
generated. Write N = Rm1 + · · · + Rmn for some m1, . . . ,mn ∈ S. Then for any
m ∈ S we can write m = r1m1 + · · · + rnmn, from which we obtain the inclusion
Ann(m1)∩· · ·∩Ann(mn) ⊆ Ann(m). Because Ann(m) is prime, Ann(mi) ⊆ Ann(m) for
some i ∈ J1, nK. Now the maximality of Ann(mi) implies that Ann(m) = Ann(mi). As
a consequence, M is finite. Finally, suppose that I is an ideal contained in Z(M). Then
I ⊆

⋃n
i=1 Ann(mi), and the fact that each Ann(mi) is prime implies that I ⊆ Ann(mj)

for some j ∈ J1, nK. �

Proposition 4. Let R be a Noetherian ring, and let M be a finitely generated nonzero
R-module. If P is a prime ideal of R minimal over Ann(M), then P = Ann(m) for
some m ∈M .

Proof. Set A = Ann(M). It is clear that the RP -module MP is a finitely generated
module over the Noetherian ring RP . Let us argue that MP is nonzero. After writ-
ing M = Rm1 + · · · + Rmk for nonzero elements m1, . . . ,mk ∈ M , we can see that⋂k

i=1 Ann(mk) ⊆ A ⊆ P . This, together with the fact that P is prime, allows us to
assume that Ann(m) ⊆ P for a nonzero m ∈ M . Suppose towards a contradiction
that m/1 = 0/1 in MP . Then there must be an element s ∈ R \ P with sm = 0.
Therefore s ∈ Ann(m) ⊆ P , a contradiction. Thus, m/1 is nonzero in MP , and so MP

is a nonzero RP -module.

It is clear that AP is contained in the annihilator of MP ; indeed, it equals the
annihilator of MP (see Exercise 1), but we do not use this fact in this proof. Let us
verify that PP is minimal over AP . A prime ideal of RP between AP and PP must
have the form QP , where Q is a prime ideal of R such that Q ⊆ P . Observe that
A ⊆ c(AP ) ⊆ c(QP ) = Q and Q = c(QP ) = c(PP ) = P , where cJ denotes the
contraction of an ideal J of RP under the localization homomorphism R→ RP . Since
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A ⊆ Q ⊆ P , the minimality of P ensures that Q = P , that is, QP = PP . Thus, PP is
minimal over AP .

It follows now from part (2) of Lemma 1 that PP is contained in Z(MP ). Since PP is
the maximal ideal of RP , we see that PP is, in particular, maximal in the set Z(MP ).
As a consequence, Proposition 3 guarantees the existence of an element in MP whose
annihilator is PP , and we can readily verify that such an element can be taken to be
m/1 for some m ∈ M . Writing P = Ra1 + · · · + Ran for some a1, . . . , an ∈ R, we
see that PP is generated by the set {ai/1 : i ∈ J1, nK}. As PP = Ann(m/1), for every
i ∈ J1, nK there is an si ∈ R \ P such that siaim = 0. Then for s = s1 · · · sn, the
equality sPm = 0 holds. Finally, we claim that P = Ann(sm). It is clear that P
annihilates sm. Conversely, if r ∈ R annihilates sm, then rs/1 annihilates m/1, and
so rs/1 ∈ PP , that is, r ∈ P . Hence P = Ann(sm), which concludes the proof. �

Overrings of One-dimensional Noetherian Domains. In order to prove Theo-
rem 9, we need to introduce the notion of length for modules. Let M be an R-module.
A composition series of M is a chain

(0.1) M = M0 ) M1 ) · · · ) M` = 0,

where Mj/Mj+1 is simple, that is, Mj/Mj+1 has no nonzero proper R-submodule for
any j ∈ J0, ` − 1K. In this case, we say that the composition series (0.1) has length `.
The Jordan-Hölder Theorem states that if M has a composition series, then any chain
of R-submodules can be refined to obtain a composition series of M , and that any two
composition series of M have the same length. If M has a composition series like (0.1),
then ` is called the length of M .

Recall that the Jacobson radical of R is the intersection of all maximal ideals of R.
The following lemma will be used in the proof of Theorem 6.

Lemma 5. Let R be a zero-dimensional Noetherian ring with identity. Then R has
finitely many prime ideals, and Rad(0) is the Jacobson radical of R.

Proof. Since R is Noetherian, we know from previous lectures that Rad (0) is the inter-
section of finitely many prime ideals, namely, P1, . . . , Pk (assume they are different).
Since every prime ideal P of R contains Rad (0), we see P1 · · ·Pk ⊆ P . As P is prime,
Pj ⊆ P for some j ∈ J1, kK, and the fact that R is zero-dimension ensures that P = Pj.
Therefore R has only finitely many prime ideals, which are also maximal ideals. Thus,
Rad (0) is the Jacobson radical of R. �

We are in a position to characterize zero-dimensional Noetherian rings in terms of
composition series.

Theorem 6. For a commutative ring R with identity, the following statements are
equivalent.
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(a) R is Noetherian and zero-dimensional.

(b) Every finitely generated R-module has a composition series.

(c) As an R-module, R has a composition series.

Proof. (a) ⇒ (b): Let M be a finitely generated R-module. Since R is a Noether-
ian zero-dimensional ring, Lemma 5 guarantees that R has finitely many prime ideals,
namely, P1, . . . , Pk. Let J := Rad (0) be the Jacobson radical of R. As R is Noe-
therian, J is finitely generated and so nilpotent. Thus, (P1 · · ·Pk)m = (0) for some
m ∈ N. Consider the ideals I1, . . . , Ikm of R defined by Iqm+r = (P1 . . . Pq)

mP r
q+1,

where q ∈ J0, k − 1K and r ∈ J1,mK. It is clear that M ⊇ M1 ⊇ M2 ⊇ · · · ⊇ Mkm = 0,
where Mj := IjM . Now fix j ∈ J1, km − 1K. Since Mj/Mj+1 is a finitely generated
module over R/P for some P ∈ Spec(R) (i.e., Mj/Mj+1 is a finite-dimensional vector
space over the field R/P ), there are (R/P )-submodules Mj,1, . . . ,Mj,nj

of Mj contain-
ing Mj+1 such that Mj = Mj,1 ) Mj,2 ) · · · ) Mj,nj

= Mj+1 satisfying that, for any
i ∈ J1, nj−1K, the quotient Mj,i/Mj,i+1 contains no nontrivial proper (R/P )-submodule
and so no nontrivial proper R-submodule. Hence M has a composition series.

(b) ⇒ (c): This is clear.

(c) ⇒ (a): Since R has a composition series, it has finite length `. Now if (Jn)n∈N
were an ascending chain of ideals (where Jn ( Jn+1), then Jordan-Hölder Theorem
would allow us to refine the chain R ) J`+1 ) J` ) · · · ) J1 ⊇ (0) to obtain a
composition series of R with length at least ` + 1. Hence every ascending chain of
ideals of R eventually stabilizes, and so R is Noetherian.

Let us finally argue that R is zero-dimensional. Let P be a prime ideal of R. Since R
has a composition series, the integral domain R/P has a composition series as an R/P -
module. Thus, it suffices to argue that every integral domain D with a composition
series is a field. To prove this, let d be a nonzero element in D. Since D has a
composition series, it must have a minimal nonzero ideal I. As dI ⊆ I, the minimality
of I ensures that dI = I. Therefore d ∈ I, and so d = da for some a ∈ I, which implies
that a = 1. Hence I = D, and we can conclude that D is a field. �

Theorem 6 can be used to prove the following result.

Proposition 7. Let R be an integral domain. Then R is Noetherian with dimension
at most 1 if and only if the R-module R/I has a composition series for every nonzero
ideal I.

Proof. For the direct implication, assume that R is Noetherian with dimR ≤ 1, and
let I be a nonzero ideal of R. If dimR = 0, then R is a field, and R/I is the zero R-
module, which trivially has a composition series. Therefore we suppose that dimR = 1.
Observe that the ring R/I is zero-dimensional: indeed, if P is a minimal prime ideal
over I, then the fact that dimR = 1 ensures that P is maximal. Then R/I has a
composition series as an (R/I)-module by Theorem 6, and so it has a composition
series as an R-module.
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For the reverse implication, assume that R/I has a composition series for every
nonzero ideal I. If P is a nonzero prime ideal, then R/P has a composition series, and
so Theorem 6 guarantees that the integral domain R/P is a zero-dimensional and so
a field, whence P is maximal. Hence dimR = 1. Finally, let (In)n∈N0 be an ascending
chain of ideals of R with I0 6= (0). Then (In/I0)n∈N is an ascending chain of ideals
of R/I0. It follows now from Theorem 6 that R/I0 is Noetherian, and so (In/I0)n∈N
eventually stabilizes. Thus, the same holds for (In)n∈N. Hence R is Noetherian. �

In the proof of Theorem 9, we will use the following technical lemma.

Lemma 8. Let R be a one-dimensional integral domain, and let a and b be nonzero
elements of R. If J = {x ∈ R : xan ∈ Rb for some n ∈ N}, then J + Ra = R.

Proof. Exercise. �

We are in a position to prove that every overring of a one-dimensional Noetherian
domain is both one-dimensional and Noetherian.

Theorem 9. Let R be a one-dimensional Noetherian domain. Then every overring
of R that is not a field is a one-dimensional Noetherian domain.

Proof. Let T be an overring of R that is not a field. Take a nonzero a ∈ R and, for
every n ∈ N, set In := Tan ∩ R + Ra. It is clear that (In)n∈N is a descending chain of
ideals of R, each of them containing Ra. Since R is a one-dimensional Noetherian ring,
the R-module R/Ra has a composition series by virtue of Proposition 7. Therefore the
descending sequence (In/Ra)n∈N of R-submodules of R/Ra must eventually stabilize.
Take N ∈ N such that In = IN for every n ≥ N . We will argue that T ⊆ Ra−N + Ta.
To do so, take t := b/c ∈ T for some b, c ∈ R, and then set

J := {x ∈ R : xan ∈ Rc for some n ∈ N}.

In light of Lemma 8, the equality R = J + Ra holds. So we can write 1 = j + ra
for some j ∈ J and r ∈ R. Take k ∈ N such that jak ∈ Rc. Now we see that
jt = b(jak/c)a−k ∈ Ra−k. Therefore t = (j + ra)t = jt + rat ∈ Ra−k + Ta. Now take
the minimum m ∈ N such that t ∈ Ra−m + Ta.

We claim that m ≤ N . Suppose, by way of contradiction, that m > N . Take
r1 ∈ R and t1 ∈ T such that t = r1a

−m + t1a. Then r1 = (t − t1a)am ∈ Tam, and so
r1 ∈ Tam ∩ R ⊆ Im. Since m > N , it follows that Im = Im+1, whence we can write
r1 = t2a

m+1 + r2a. Hence

t =
r1
am

+ t1a =
t2a

m+1 + r2a

am
+ t1a =

r2
am−1

+ (t1 + t2)a ∈ Ra−(m−1) + Ta.

However, this generates a contradiction with the minimality of m. As a consequence,
m ≤ N , as desired.
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Because t ∈ Ra−m+Ta ⊆ Ra−N +Ta, the inclusion T ⊆ Ra−N +Ta holds. Therefore
T/aT is a submodule of a cyclic R-module. As a result, T/aT is a finitely generated R-
module. As any nonzero ideal of T contains a nonzero element of R, every quotient of T
by a nonzero ideal has a composition series. Hence T is a one-dimensional Noetherian
domain by Proposition 7. �

In general, an overring of a Noetherian domain does not have to be Noetherian, as
the following example illustrates.

Example 10. Consider the Noetherian domain Q[x, y] (we will see in future lectures
that dimQ[x, y] = 2). The quotient field of Q[x, y] is the ring Q(x, y) consisting of all
rational polynomials in two variables. Now consider the ring T = Q[x] + yQ[x]x[y],
where Q[x]x is the localization of Q[x] at the multiplicative set {xn : n ∈ N0} (i.e., the
ring of Laurent polynomials Q[x, x−1]). It is clear that T is an overring of R. To argue
that T is not Noetherian, it suffices to show that the ideal Ty is not finitely generated.
Suppose, otherwise, that Ty = (f1, . . . , fn). Take m ∈ N0 such that xmfi ∈ Q[x, y] for
all i ∈ J1, nK. Since y/xm+1 ∈ Ty, we can take g1, . . . , gn ∈ T such that the equality

(0.2) x−1y = g1x
mf1 + · · ·+ gnx

mfn

holds. Then we can equate the coefficients of y in both sides of (0.2) to find that

x−1 = g1(x, 0)xm d

dy
f1(x, 0) + · · ·+ gn(x, 0)xm d

dy
fn(x, 0) ∈ Q[x]

(here d
dy
h(x, y) denotes the formal derivative of h ∈ Q(x)[y] with respect to y). How-

ever, x−1 ∈ Q[x] is clearly a contradiction. Thus, we conclude that T is not Noetherian.

Exercises

Exercise 1. Let R be a commutative ring with identity, and let M be a finitely generated
R-module. For a multiplicative subset S of R, prove that

S−1Ann(M) = Ann(S−1M).

Exercise 2. Let R be a one-dimensional integral domain, and let a and b be nonzero
elements of R. Show that if J = {x ∈ R : xan ∈ Rb for some n ∈ N}, then J+Ra = R.

Exercise 3. Let R be a one-dimensional Noetherian domain, and let T be an overring
of R. For a prime ideal P of R, show that there are only finitely many ideals Q of T
lying over P , that is, satisfying Q ∩R = P .
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