IDEAL THEORY AND PRUFER DOMAINS

FELIX GOTTI

OVERRINGS OF ONE-DIMENSIONAL NOETHERIAN RINGS

The main purpose of this lecture is to prove that every overring of a one-dimensional
Noetherian domain is again one-dimensional and Noetherian. Throughout this lecture,
every ring is assumed to be commutative with an identity element.

Modules Over Noetherian Rings. In this subsection, we will established two re-
sults related to the set of annihilator of a finitely generated module over a Noetherian
ring. For an R-module M, recall that Ann(m) = {r € R : rm = 0} is called the
annihilator of m for every m € M and Ann(M) = {r € R : rM = 0} is called the
annihilator of M. In this subsection we let Z(M) denote the set J,,cpp o) Ann(m).
We need the following lemma.

Lemma 1. Let M be a nonzero R-module. Then the following statements hold.
(1) If P is mazimal in the set {Ann(m) :m € M \ {0}}, then P is prime.
(2) Ewvery prime ideal minimal over Ann(M) belongs to Z(M).

Proof. (1) Let P = Ann(m) be maximal in the set & = {Ann(m) : m € M\ {0}}, and
take r, s € R such that rs € P. Then r(sm) = 0. If sm = 0, then s € P. Otherwise,
Ann(sm) is an ideal in &/ containing r. Since P C Ann(sm), the maximality of P
ensures that » € Ann(sm) = P. Thus, the ideal P is prime.

(2) Let P be a prime ideal minimal over Ann(M). Consider the multiplicative
subset S :={rt :r ¢ Z(M) and t ¢ P}. Note that R\ S C Z(M). Suppose, by way
of contradiction, that S N Ann(M) is nonempty and take rt € Ann(M) NS for some
re R\ Z(M)and t € R\ P. Then rtM = 0. Asr ¢ Z(M), the equality tM = 0
and so t € Ann(M) C P, which is a contradiction. Thus, S is disjoint from Ann(M).
Let @ be maximal among all the ideals containing Ann(M) and disjoint from S. Then
Q C Z(M) and Ann(M) C Q C P. It follows now from the minimality of P that
) = P and, therefore, we can conclude that P C Z(M). O

As we proceed to argue, in a zero-dimensional ring, every element that is not a
zero-divisor must be a unit.

Proposition 2. Let R be a zero-dimensional commutative ring with identity. If r is

not a zero-divisor, then r € R*.
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Proof. Suppose that r is not a zero-divisor. Considering R as a module over itself, we
see that r ¢ Z(R) and Ann(R) = 0. Since R is zero-dimensional, every maximal ideal
of R must be a minimal prime ideal over Ann(R) and so must be included in Z(R) by
part (2) of Lemma 1. Hence r is not contained in any maximal ideal and, therefore, r
must be a unit. OJ

Proposition 3. Let R be a Noetherian ring and let M be a finitely generated R-module.
Then there are only finitely many ideals of R that are mazimal in Z(M). Moreover,
each of these ideals is a prime ideal of the form Ann(m) for some nonzero m € M.

Proof. Since R is Noetherian and M is finitely generated, M is a Noetherian R-module.
Let .# be the set of maximal elements in {Ann(m) : m € M \ {0}}. We know that
every ideal in . is a prime ideal, and it is clear that the set 2 of elements of R
annihilating some nonzero element of M is the union of the prime ideals in .#. Write
A = {Ann(m) : m € S} for a subset S of M, and let us verify that .# is finite.
Let N denote the R-submodule of M spanned by S. As M is Noetherian, NV is finitely
generated. Write N = Rmy + --- + Rm,, for some mq,...,m, € S. Then for any
m € S we can write m = rymy; + -+ + r,m,, from which we obtain the inclusion
Ann(my)N---NAnn(m,) C Ann(m). Because Ann(m) is prime, Ann(m;) C Ann(m) for
some ¢ € [1,n]. Now the maximality of Ann(m;) implies that Ann(m) = Ann(m;). As
a consequence, . is finite. Finally, suppose that [ is an ideal contained in Z(M). Then
I C Ui, Ann(m;), and the fact that each Ann(m;) is prime implies that I C Ann(m;)
for some j € [[1,n]. O

Proposition 4. Let R be a Noetherian ring, and let M be a finitely generated nonzero
R-module. If P is a prime ideal of R minimal over Ann(M), then P = Ann(m) for
some m € M.

Proof. Set A = Ann(M). It is clear that the Rp-module Mp is a finitely generated
module over the Noetherian ring Rp. Let us argue that Mp is nonzero. After writ-
ing M = Rmq + --- + Rm,, for nonzero elements myq,...,my € M, we can see that
ﬂle Ann(my) € A C P. This, together with the fact that P is prime, allows us to
assume that Ann(m) C P for a nonzero m € M. Suppose towards a contradiction
that m/1 = 0/1 in Mp. Then there must be an element s € R\ P with sm = 0.
Therefore s € Ann(m) C P, a contradiction. Thus, m/1 is nonzero in Mp, and so Mp
is a nonzero Rp-module.

It is clear that Ap is contained in the annihilator of Mp; indeed, it equals the
annihilator of Mp (see Exercise 1), but we do not use this fact in this proof. Let us
verify that Pp is minimal over Ap. A prime ideal of Rp between Ap and Pp must
have the form @)p, where () is a prime ideal of R such that ¢ C P. Observe that
A C “(Ap) C 4(Qp) = @ and @ = “(Qp) = “(Pp) = P, where °J denotes the

contraction of an ideal J of Rp under the localization homomorphism R — Rp. Since
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A C @ C P, the minimality of P ensures that () = P, that is, Qp = Pp. Thus, Pp is
minimal over Ap.

It follows now from part (2) of Lemma 1 that Pp is contained in Z(Mp). Since Pp is
the maximal ideal of Rp, we see that Pp is, in particular, maximal in the set Z(Mp).
As a consequence, Proposition 3 guarantees the existence of an element in Mp whose
annihilator is Pp, and we can readily verify that such an element can be taken to be
m/1 for some m € M. Writing P = Ray + --- + Ra, for some ay,...,a, € R, we
see that Pp is generated by the set {a;/1 : i € [1,n]}. As Pp = Ann(m/1), for every
i € [1,n] there is an s; € R\ P such that s;a;m = 0. Then for s = sy---s,, the
equality sPm = 0 holds. Finally, we claim that P = Ann(sm). It is clear that P
annihilates sm. Conversely, if » € R annihilates sm, then rs/1 annihilates m/1, and
so rs/1 € Pp, that is, r € P. Hence P = Ann(sm), which concludes the proof. O

Overrings of One-dimensional Noetherian Domains. In order to prove Theo-
rem 9, we need to introduce the notion of length for modules. Let M be an R-module.
A composition series of M is a chain

(0.1) M=My2M 22 M =0,

where M; /M, is simple, that is, M;/M;,; has no nonzero proper R-submodule for
any j € [0,¢ — 1]. In this case, we say that the composition series (0.1) has length .
The Jordan-Holder Theorem states that if M has a composition series, then any chain
of R-submodules can be refined to obtain a composition series of M, and that any two
composition series of M have the same length. If M has a composition series like (0.1),
then /¢ is called the length of M.

Recall that the Jacobson radical of R is the intersection of all maximal ideals of R.
The following lemma will be used in the proof of Theorem 6.

Lemma 5. Let R be a zero-dimensional Noetherian ring with identity. Then R has
finitely many prime ideals, and Rad(0) is the Jacobson radical of R.

Proof. Since R is Noetherian, we know from previous lectures that Rad (0) is the inter-
section of finitely many prime ideals, namely, Py,..., P, (assume they are different).
Since every prime ideal P of R contains Rad (0), we see Py --- P, C P. As P is prime,
P; C P for some j € [1, k], and the fact that R is zero-dimension ensures that P = P;.
Therefore R has only finitely many prime ideals, which are also maximal ideals. Thus,
Rad (0) is the Jacobson radical of R. O

We are in a position to characterize zero-dimensional Noetherian rings in terms of
composition series.

Theorem 6. For a commutative ring R with identity, the following statements are
equivalent.
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(a) R is Noetherian and zero-dimensional.
(b) Ewery finitely generated R-module has a composition series.
(c) As an R-module, R has a composition series.

Proof. (a) = (b): Let M be a finitely generated R-module. Since R is a Noether-
ian zero-dimensional ring, Lemma 5 guarantees that R has finitely many prime ideals,
namely, Py,..., P,. Let J := Rad(0) be the Jacobson radical of R. As R is Noe-
therian, J is finitely generated and so nilpotent. Thus, (P;--- P;)™ = (0) for some
m € N. Consider the ideals Iy, ..., Iy, of R defined by Iy, = (Pr... )" P,
where ¢ € [0,k — 1] and r € [1,m]. It is clear that M O M; D My D -+ D My, =0,
where M; := I;M. Now fix j € [1,km — 1]. Since M;/M; is a finitely generated
module over R/P for some P € Spec(R) (i.e., M;/M;, is a finite-dimensional vector
space over the field R/P), there are (R/P)-submodules M1, ..., M;,, of M; contain-
ing Mj,y such that M; = My 2 Mjs 2 -+ 2 M;,, = M;, satisfying that, for any
i € [1,n;—1], the quotient M;,; /M, 41 contains no nontrivial proper (R/P)-submodule
and so no nontrivial proper R-submodule. Hence M has a composition series.

(b) = (c): This is clear.

(¢) = (a): Since R has a composition series, it has finite length ¢. Now if (J,)nen
were an ascending chain of ideals (where J,, C J,41), then Jordan-Ho6lder Theorem
would allow us to refine the chain R 2 Jyyy 2 Jy 2 --- 2 J; O (0) to obtain a
composition series of R with length at least ¢ + 1. Hence every ascending chain of
ideals of R eventually stabilizes, and so R is Noetherian.

Let us finally argue that R is zero-dimensional. Let P be a prime ideal of R. Since R
has a composition series, the integral domain R/P has a composition series as an R/ P-
module. Thus, it suffices to argue that every integral domain D with a composition
series is a field. To prove this, let d be a nonzero element in D. Since D has a
composition series, it must have a minimal nonzero ideal I. As dI C I, the minimality
of I ensures that dI = I. Therefore d € I, and so d = da for some a € I, which implies
that « = 1. Hence I = D, and we can conclude that D is a field. [

Theorem 6 can be used to prove the following result.

Proposition 7. Let R be an integral domain. Then R is Noetherian with dimension
at most 1 if and only if the R-module R/I has a composition series for every nonzero

ideal 1.

Proof. For the direct implication, assume that R is Noetherian with dim R < 1, and
let I be a nonzero ideal of R. If dim R = 0, then R is a field, and R/I is the zero R-
module, which trivially has a composition series. Therefore we suppose that dim R = 1.
Observe that the ring R/I is zero-dimensional: indeed, if P is a minimal prime ideal
over I, then the fact that dim R = 1 ensures that P is maximal. Then R/I has a
composition series as an (R/I)-module by Theorem 6, and so it has a composition
series as an R-module.
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For the reverse implication, assume that R/I has a composition series for every
nonzero ideal I. If P is a nonzero prime ideal, then R/P has a composition series, and
so Theorem 6 guarantees that the integral domain R/P is a zero-dimensional and so
a field, whence P is maximal. Hence dim R = 1. Finally, let (/,,)nen, be an ascending
chain of ideals of R with Iy # (0). Then (/,/ly)nen is an ascending chain of ideals
of R/Iy. Tt follows now from Theorem 6 that R/I, is Noetherian, and so (I,,/1y)nen
eventually stabilizes. Thus, the same holds for (/,,),en. Hence R is Noetherian. [

In the proof of Theorem 9, we will use the following technical lemma.

Lemma 8. Let R be a one-dimensional integral domain, and let a and b be nonzero

elements of R. If J ={x € R : za™ € Rb for some n € N}, then J+ Ra = R.
Proof. Exercise. O

We are in a position to prove that every overring of a one-dimensional Noetherian
domain is both one-dimensional and Noetherian.

Theorem 9. Let R be a one-dimensional Noetherian domain. Then every overring
of R that is not a field is a one-dimensional Noetherian domain.

Proof. Let T be an overring of R that is not a field. Take a nonzero a € R and, for
every n € N, set I, := Ta™ N R+ Ra. It is clear that ([,,)nen is a descending chain of
ideals of R, each of them containing Ra. Since R is a one-dimensional Noetherian ring,
the R-module R/Ra has a composition series by virtue of Proposition 7. Therefore the
descending sequence (I,,/Ra)nen of R-submodules of R/Ra must eventually stabilize.
Take N € N such that I,, = Iy for every n > N. We will argue that T C Ra=" + Ta.
To do so, take t := b/c € T for some b,c € R, and then set

J :={x € R:xza" € Re for some n € N}.

In light of Lemma 8, the equality R = J 4+ Ra holds. So we can write 1 = j + ra
for some j € J and r € R. Take k € N such that ja* € Re. Now we see that
gt =b(ja*/c)a™* € Ra™*. Therefore t = (j + ra)t = jt + rat € Ra™* + Ta. Now take
the minimum m € N such that t € Ra™ + Ta.

We claim that m < N. Suppose, by way of contradiction, that m > N. Take
r1 € R and t; € T such that ¢t = ria™™ + tya. Then r; = (t — t1a)a™ € Ta™, and so
rr € Ta"N R C I,,. Since m > N, it follows that I,, = I,,,1, whence we can write
ry = toa™ !t + roa. Hence

r toa™t 4+ roa
t:—1+t1a:¥+tla:
am

am am—l

+ (t1 + ty)a € Ra™ ™Y 4 Ta.

However, this generates a contradiction with the minimality of m. As a consequence,
m < N, as desired.
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Because t € Ra™"+Ta C Ra~~+Ta, the inclusion T C Ra~" +Ta holds. Therefore
T'/aT is a submodule of a cyclic R-module. As a result, T'/aT is a finitely generated R-
module. As any nonzero ideal of T' contains a nonzero element of R, every quotient of T’
by a nonzero ideal has a composition series. Hence T is a one-dimensional Noetherian
domain by Proposition 7. O

In general, an overring of a Noetherian domain does not have to be Noetherian, as
the following example illustrates.

Example 10. Consider the Noetherian domain Q[z,y] (we will see in future lectures
that dim Q[z, y] = 2). The quotient field of Q[z,y| is the ring Q(z,y) consisting of all
rational polynomials in two variables. Now consider the ring 7' = Q[z] + yQ[z].[y],
where Q[z], is the localization of Q[x] at the multiplicative set {z" : n € Ny} (i.e., the
ring of Laurent polynomials Q[z,x7!]). It is clear that T is an overring of R. To argue
that T is not Noetherian, it suffices to show that the ideal Ty is not finitely generated.
Suppose, otherwise, that Ty = (fi,..., fn). Take m € Ny such that 2™ f; € Q[z, y| for
all 7 € [1,n]. Since y/2™™ € Ty, we can take gi,...,g, € T such that the equality

(0.2) ey =g fi+ -+ gax™ fo
holds. Then we can equate the coefficients of y in both sides of (0.2) to find that

d d
vt = gi(x, O)xmd—yfl(a;, 0) + -+ gnlx, O)xmd—yfn(x, 0) € Q[z]

(here diyh(x, y) denotes the formal derivative of h € Q(x)[y] with respect to y). How-
ever, v~ € Q|x] is clearly a contradiction. Thus, we conclude that T is not Noetherian.

EXERCISES
Exercise 1. Let R be a commutative ring with identity, and let M be a finitely generated

R-module. For a multiplicative subset S of R, prove that
S~'Ann(M) = Ann(S™'M).

Exercise 2. Let R be a one-dimensional integral domain, and let a and b be nonzero
elements of R. Show that if J = {x € R : za™ € Rb for somen € N}, then J+ Ra = R.

Exercise 3. Let R be a one-dimensional Noetherian domain, and let T' be an overring
of R. For a prime ideal P of R, show that there are only finitely many ideals Q) of T
lying over P, that is, satisfying Q@ N R = P.
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