
IDEAL THEORY AND PRÜFER DOMAINS

FELIX GOTTI

Integer-Valued Polynomials I

The goal of this final lecture is to give a brief introduction to rings of integer-valued
polynomials. Throughout this section, R is an integral domain with quotient field K.
The ring

Int(R) := {p(x) ∈ K[x] | p(R) ⊆ R}
is called the ring of integer-valued polynomials of R. We will conclude this lecture
proving that the ring of integer-valued polynomial of a Dedekind domain with finite
residue fields is a Prüfer domain. In particular, Int(Z) is a Prüfer domain. Here we
will also describe the spectrum of Int(S,R).

Uniform Continuity and Stone-Weierstrass Theorem. Let R be a Noetherian
ring, and let I be an ideal of R. By Krull Intersection Theorem,

⋂
n∈N I

n = (0). Then
we can define wI : R → N0 by wI(r) = sup{n ∈ N0 | r ∈ In} if r 6= 0 and wI(0) = ∞.
Using wI one can define a metric on R by setting |r|I := e−wI(r) and

(0.1) d(r, s) = |r − s|I = e−w(r−s)

for all r, s ∈ R, with the convention e−∞ = 0. With d defined as in (0.1), the ring R
becomes a metric space; indeed, the following properties can be easily verified:

• d(r, s) = 0 if and only if r = s,

• d(r, s) = d(s, r), and

• d(r, t) ≤ sup{d(r, s), d(s, t)} ≤ d(r, s) + d(s, t)

for all r, s, t ∈ R. The topology on R induced by the distance d is called the I-adic
topology, and R is a topological ring with respect to the I-adic topology.

Proposition 1. Let R be a Noetherian domain, and let I be an ideal of R. Then every
f ∈ Int(R) is uniformly continuous on R with respect to the I-adic topology.

Proof. Take f ∈ Int(R), and fix ε > 0. Then take d ∈ R such that df(x) ∈ R[x]. By
virtue of Artin-Rees Lemma, there is a k ∈ N0 such that In+k ∩ dR = In(Ik ∩ dR) for
every n ∈ N0. Now set δ := e−(n0+k), where n0 ∈ N satisfies that e−n0 < ε. Now take
r, s ∈ R with |r−s|I < δ. It is not hard to verify that r−s divides d(f(r)−f(s)) in R,
that is, d(f(r)−f(s)) ∈ (r−s)R. This implies that d(f(r)−f(s)) ∈ (r−s)R ⊆ In0+k,
and so

d(f(r)− f(s)) ∈ In0+k ∩ dR = In0(Ik ∩ dR) ⊆ dIn0 .
1
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As a consequence, f(r)− f(s) ∈ In0 , and we see that |f(r)− f(s)|I ≤ e−n0 < ε. Hence
we conclude that f is uniformly continuous on R in the I-adic topology. �

Corollary 2. Every polynomial in Int(Z) is uniformly continuous as a function on Zp
with respect to the p-adic topology.

For every compact subset K of R, the ring of polynomials R[x] is dense in the metric
space C(K,R) consisting of all continuous real-valued functions on K with respect to
the uniform convergence topology. This is known as the Stone-Weierstrass Theorem.
A parallel result for the p-adic completion of Q was proved in 1944 by Dieudonné [3,
Theorem 4]: Qp[x] is dense in C(K,Qp) for every compact subset K of Qp with respect
to the p-adic topology. Our next theorem is a related version of the Stone-Weierstrass
Theorem for rings of integer-valued polynomials, due to Mahler [4, Theorem 1]. Since
Zp is the closure of Z in Qp and Zp is a complete metric space, by virtue of Proposition 1,
every polynomial in Int(Z) uniquely extends as a continuous function to a function in
C(Zp,Zp). Thus, we can assume that Int(Z) ⊆ C(Zp,Zp).
Theorem 3. For each p ∈ P, the ring of integer-valued polynomials Int(Z) is dense in
C(Zp,Zp) with respect to the uniform convergence topology.

Proof. Fix p ∈ P and n ∈ N, and then set Ui := i + pnZp for every i ∈ J0, pn − 1K.
Note that for each Ui is a clopen ball in Zp with respect to the p-adic topology and,
in addition, Zp is the disjoint union of all these balls. Now let χi : Zp → Zp be the
characteristic functions of Ui, that is, χi(x) = 1 if x ∈ Ui and χi(x) = 0 otherwise.
Clearly, χi ∈ C(Zp,Zp) for every i ∈ J0, pn − 1K. We will argue now that each χi
is an integral combination of the binomial functions

(
x
0

)
, . . . ,

(
x

pn−1

)
modulo p. Since

deg
(
x
k

)
= k < pn for every k ∈ J0, pn−1K, it is not hard to argue that for every a, b ∈ Z,

(0.2)
∣∣∣(b
k

)
−
(
a

k

)∣∣∣
p
≤ pn−1|b− a|p

(see Exercise 2). Since Zp is the closure of Z in Qp, we obtain that (0.2) also holds
for every a, b ∈ Zp. Then if a, b ∈ Ui for some i ∈ J0, pn − 1K, then the fact that
vp(b− a) ≥ n ensures that∣∣∣(b

k

)
−
(
a

k

)∣∣∣
p
≤ pn−1|b− a|p ≤ p−1,

which means that
(
x
k

)
is constant on Ui modulo p. Therefore for every k ∈ J0, pn − 1K

there is a function δk ∈ C(Zp,Zp) such that

(0.3)

(
x

k

)
= pδk +

pn−1∑
i=0

(
i

k

)
χi.

We can write the identity (0.3) using matrix notation as B = pD +MX, where B,D,

and X are the column vectors
((
x
0

)
, . . . ,

(
x

pn−1

))T
, (δ0, . . . , δpn−1)

T , and (χ0, . . . , χpn−1)
T ,
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respectively, and M is the square matrix with entry
(
i
k

)
in the position (k, i). Observe

that M is upper triangular with 1’s in its main diagonal. Thus, M is invertible, and
X = M−1B − pM−1D. After unfolding this matrix identity, we find that for every
i ∈ J0, pn − 1K there is a function σi ∈ C(Zp,Zp) such that

χi = pσi +

pn−1∑
i=0

cik

(
x

k

)
,

where cik ∈ N0 for every k ∈ J0, pn − 1K. Since
{(

x
k

)
: k ∈ N0

}
is a Z-basis for

Int(Z), every characteristic function can be approximated modulo p in C(Zp,Zp) by
an integer-valued polynomial.

Now suppose that φ0 ∈ C(Zp,Zp). Since Zp is compact, φ0 is uniformly continuous
and, therefore, we can take n ∈ N large enough so that φ0 is constant modulo p on Ui
for every i ∈ J0, pn − 1K. Therefore φ0 equals modulo p an integral linear combination
of the characteristic functions χ1, . . . , χpn−1, and so we can take f0 ∈ Int(Z) such that
φ0 = f0 + pφ1 for some φ1 ∈ C(Zp,Zp). Now we can repeat the same argument for φ1

to obtain f1 ∈ Int(Z) and φ2 ∈ C(Zp,Zp) such that φ0 = f0 + pf1 + p2φ2. Continuing
in this fashion, for every n ∈ N0 we find f0, . . . , fn ∈ Int(Z) and φn+1 ∈ C(Zp,Zp) such
that φ0 = pn+1φn+1 +

∑n
i=0 p

ifi. Hence for every n ∈ N, there exists g ∈ Int(Z) such
that vp(φ0(x)− g(x)) ≥ n+ 1 for every x ∈ Zp. This allows us to conclude that Int(Z)
is dense in C(Zp,Zp). �

Corollary 4. Let U1, . . . , Uk be disjoint open subsets covering Zp, and let c1, . . . , ck be
nonnegative integers. Then there exists f(x) ∈ Int(Z) such that vp(f(x)) = ci for all
x ∈ Ui and i ∈ J1, kK.

Proof. Set n := 1 + max{ci : i ∈ J1, kK}. Now consider the function ϕ =
∑k

i=1 p
ciχi,

where χi is the characteristic function of Ui. It is clear that ϕ ∈ C(Zp,Zp). Therefore,
Stone-Weierstrass Theorem guarantees the existence of f ∈ Int(Z) such that |ϕ−f |p <
p−n, and so vp(p

ci − f(x)) ≥ n > ci for all x ∈ Ui and i ∈ J1, kK. This implies that
vp(f(x)) = ci whenever x ∈ Ui and i ∈ J1, kK. �

Hensel’s Lemma. In this subsection, we will discuss Hensel’s lemma, which will be
used to describe the spectrum of Int(Z) in the next subsection.

Lemma 5. Let R be a commutative ring with identity, and let f ∈ R[x]. Then there
exists g(x, y) ∈ R[x, y] such that

f(x+ y) = f(x) + f ′(x)y + g(x, y)y2.

Proof. After writing f(x) =
∑n

i=0 cix
i for some c0, . . . , cn ∈ R, we see that

f(x+ y) =
n∑
k=0

ck(x+ y)k = c0 +
n∑
k=1

(
ck(x

k + kxk−1y) + gi(x, y)y2
)
,
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where gi(x, y) ∈ R[x, y] for every i ∈ J1, kK. Now we can set g(x, y) =
∑n

k=1 gi(x, y) to
obtain the desired identity, namely,

f(x+ y) =
n∑
k=0

ckx
k +

( n∑
k=1

ckkx
k−1
)
y+

( n∑
k=1

gi(x, y)

)
y2 = f(x) + f ′(x)y+ g(x, y)y2.

�

We proceed to prove Hensel’s Lemma.

Theorem 6 (Hensel’s Lemma). Let f be a monic polynomial in Zp[x], and suppose
that f(a) ≡ 0 (mod pZp) but f ′(a) 6≡ 0 (mod pZp) for some a ∈ Zp. Then there exists
a unique r ∈ Zp such that f(r) = 0 and r ≡ a (mod pZp).

Proof. Let us argue that there exists a sequence (an)n∈N0 with terms in Zp such that
for every n ∈ N≥1,

(0.4) an ≡ an−1 (mod pn−1Zp) and f(an) ≡ 0 (mod pnZp).

We proceed by induction on n. For n = 1, both conditions in (0.4) clearly hold after
taking a0 = a1 = a. Suppose, therefore, that we have found a0, a1, . . . , an satisfying
both conditions in (0.4) for some n ∈ N. Since f ′(a) 6≡ 0 (mod pZp), the congruence
equation f ′(a)x ≡ −f(an)/pn (mod pZp) has a solution tn in Zp. Now it follows from
Lemma 5 that

f(an + pntn) = f(an) + f ′(an)pntn + zp2nt2n

for some z ∈ Zp, and so f(an+pntn) ≡ f(an)+f ′(an)pntn (mod pn+1Zp). Since an ≡ a
(mod pZp), it follows that f ′(an)pntn ≡ f ′(a)pntn (mod pn+1Zp). Set an+1 := an+pntn.
Because f ′(a)tn ≡ −f(an)/pn (mod pZp), we see that an+1 is a root of f modulo
pn+1Zp:

f(an+1) = f(an + pntn) ≡ f(an) + f ′(a)pntn ≡ 0 (mod pn+1Zp).

Therefore an+1 ≡ an (mod pnZp) and f(an+1) ≡ 0(mod pn+1Zp), as desired. At this
point, we have produced a sequence (an)n∈N whose terms satisfy the conditions in (0.4).
The first condition in (0.4) ensures that (an)n∈N is a Cauchy sequence in Zp. As Zp is
complete, (an)n∈N converges. Let r denote the limit of (an)n∈N. Since for each n ∈ N,
the congruence equality an+k ≡ an (mod pnZp) holds for every k ∈ N, after taking
limits we obtain r ≡ an (mod pnZp) and, in particular, r ≡ a (mod pZp). Also, for
each n ∈ N, after applying f to both sides of r ≡ an (mod pnZp), we obtain that
f(r) ≡ f(an) ≡ 0 (mod pnZp), that is, f(r) ∈

⋂
n∈N p

nZp. Hence f(r) = 0.

Finally, let us prove that r is the unique element of Zp satisfying the desired prop-
erties. To do so, suppose that r′ ∈ Zp satisfies that f(r′) = 0 and r′ ≡ a (mod pZp).
Proving that r′ = r amounts to verifying that r′ ≡ r (mod pnZp) for every n ∈ N.
We proceed by induction. It is clear that r′ ≡ r (mod pZp). Assume that r′ ≡ r
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(mod pnZp) for some n ∈ N, and write r′ = r+pnzn for some zn ∈ Zp. Using Lemma 5
and the fact that f(r′) = f(r) = 0, we see that

0 = f(r′) = f(r + pnzn) ≡ f(r) + f ′(r)pnzn = f ′(r)pnzn (mod pn+1).

Hence f ′(r)zn ∈ pZp. Because pZp is prime, the fact that f ′(r) ≡ f ′(a) 6≡ 0 (mod pZp)
ensures that zn ∈ pZp. Thus, r′ = r + pnzn ≡ r (mod pn+1Zp). Hence r′ ≡ r
(mod pnZp) for every n ∈ N, which implies that r′ = r. �

Example 7. Consider the polynomial f(x) = x2 + 5 ∈ Z[x], which does not have any
root in Z (indeed, f(x) does not have any root in R). We will use Hensel’s Lemma to
show that f(x) has a root in Z3. This amounts to observing that 1 is a simple root
of f(x) modulo 3, that is, f(1) ≡ 0 (mod 3Z3) while f ′(1) = 2 6≡ 0 (mod 3Z3). As a
consequence, −5 is a square in Z3.

Spectrum of Int(Z). We are in a position now to describe the spectrum and the
maximal spectrum of the ring Int(Z).

Theorem 8 (Spectrum of Int(Z)). The following statements hold.

(1) A nonzero prime ideal of Int(Z) lies over the ideal (0) in Z if and only if it has
the form

Pq(x) := Int(Z) ∩ q(x)Q[x],

for some irreducible polynomial q(x) ∈ Q[x]. In addition, for any two distinct
monic irreducible polynomials q(x) and r(x) of Q[x], the ideals Pq(x) and Pr(x)
are different.

(2) A prime ideal of Int(Z) lies over the ideal (p) in Z for some p ∈ P if and only
if it has the form

Mp,α := {f ∈ Int(Z) : f(α) ∈ pZp}
for some α ∈ Zp, in which case it is maximal. For any distinct pairs (p, α) and
(p′, α′), the ideals Mp,α and Mp′,α′ are different.

(3) The ideal Pq(x) is contained in Mp,α if and only if q(α) = 0. Also, the maximal
ideals of Int(Z) are precisely those of the form Mp,α.

Proof. (1) It is clear that Pq(x) lies over (0) in Z. Moreover, after setting S = Z \ {0},
we see that the prime ideals of Int(Z) lying over (0) are precisely the prime ideals of
Int(Z) that do not intersect S and, therefore, are in one-to-one correspondence with
the prime ideals of S−1Int(Z) = Q[x]. Thus, the nonzero prime ideals of Int(Z) are
precisely the Pq(x), which are the contractions of the nonzero prime ideals of Q[x]. The
last statement follows immediately as two principal prime ideals q(x)Q[x] and r(x)Q[x]
are equal if and only if r(x) = q(x).

(2) Fix p ∈ P and α ∈ Zp. Observe that the map ϕ : Int(Z) → Zp/pZp defined by
ϕ(f) = f(α) + pZp is a ring homomorphism whose kernel is Mp,α. As Zp is the disjoint
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union of the balls i+pZp (for i ∈ J0, p−1K), we see that ϕ(X− j+1) = 1+pZp, where
j ∈ J1, kK is chosen so that α + pZp = j + pZp. Hence ϕ is surjective and, therefore,
Int(Z)/Mp,α

∼= Zp/pZp ∼= Fp. Thus, Mp,α is a maximal ideal. Also, it is clear that Mp,α

lies over (p).

Now let us argue that the Mp,α are the only prime ideals of Int(Z) lying over (p).
Suppose, by way of contradiction, that P is a prime ideal of Int(Z) lying over (p) such
that P 6= Mp,α for any α ∈ Zp. Then for each α ∈ Zp, we can take fα ∈ Mp,α \ P .
Now for each α ∈ Zp, the continuity of fα guarantees the existence of an open Uα
containing α such that vp(fα(x)) ≥ 1 for all x ∈ Uα. The compactness of Zp ensures

the existence of α1, . . . , αk ∈ Zp such that Zp =
⋃k
i=1 Uαi

. Now set f = fα1 · · · fαk
. Then

vp(f(x)) =
∑k

i=1 vp(fαi
(x)) ≥ 1 for all x ∈ Zp. As a result, we see that f/p ∈ Int(Z),

which implies that f = p(f/p) ∈ P . Now the fact that fαi
/∈ P for any i ∈ J1, kK

contradicts that the ideal P is prime. Hence the only prime ideals of Int(Z) over (p)
in Z are the Mp,α with α ∈ Zp.

Suppose now that Mp,α = Mp,β for some p ∈ P and α, β ∈ Zp. Then vp(f(α)) ≥ 1
if and only if vp(f(β)) ≥ 1 for every f ∈ Int(Z). Now if α 6= β, then we could take
k ∈ N large enough so that the clopen balls α + pkZp and β + pkZp are disjoint, and
by virtue of Corollary 4, we could find a polynomial f ∈ Int(Z) with vp(f(α)) = 0 and
vp(f(β)) = 1.

(3) It is clear that the ideal Pq(x) is contained in Mp,α provided that q(α) = 0. To
argue the converse, assume that Pq(x) ⊆ Mp,α for some p ∈ P and α ∈ Zp. Now
suppose, by way of contradiction, that q(α) 6= 0. After replacing q(x) by a suitable
integer multiple, we can assume that q(x) ∈ Z[x] ∩ Pq(x). Set n := vp(q(α)) ∈ N0. As
q ∈ C(Zp,Zp), there is a clopen subset U of Zp containing α such that vp(q(x)) = n
for all x ∈ U . Then Corollary 4 guarantees the existence of f ∈ Int(Z) such that
vp(f(x)) = 0 if x ∈ U and vp(f(x)) = n if x ∈ Zp \U . Set g = f/pn. Since gq ∈ Int(Z),
it follows that gq ∈ Pq(x). However, the fact that vp(g(α)q(α)) = 0 implies that
gq /∈Mp,α. Therefore Pq(x) is not contained in Mα,p, which is a contradiction.

Finally, let q(x) be an irreducible in Q[x], and let us argue that the prime ideal Pq(x)
is not maximal. After replacing q(x) by an integer multiple we can actually assume
that q(x) ∈ Z[x]. We split the rest of the proof into two parts. First, we argue that
the set

P := {p ∈ P : p | q(z) for some z ∈ Z}
is infinite. It is clear that P = P when q(x) ∈ xZ[x], as in this case q(x) = ±x.
Suppose, therefore, that q(x) =

∑n
i=0 cix

i for some c0, . . . , cn ∈ Z with c0 6= 0. Assume
now, towards a contradiction, that P is finite, and let m be the product of all the
primes in P (it is clear that P is nonempty). Since q(x) is not constant, we can take
j ∈ N such that q(c0m

j) 6= ±c0. Now observe that q(c0m
j) = c0(1 + mjc) for some

c ∈ Z. As q(c0m
j) 6= ±c0, we see that |1 +mjc| 6= 1, and so we can take p ∈ P dividing
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1 + mjc. As p - m, it follows that p /∈ P , which contradicts that p | q(c0mj). Hence
|P | =∞.

Since q(x) is irreducible, d := gcd(q(x), q′(x)) ∈ Z. Take a(x), b(x) ∈ Z[x] such that
a(x)q(x) + b(x)q′(x) = d. Let p be a prime in P that does not divide d (which exists
because |P | = ∞), and let q̄(x) and q̄′(x) be the reductions of the polynomials q(x)
and q′(x) modulo p, respectively. By definition of P , there exists z0 ∈ Z such that
q̄(z0) = 0. After reducing a(x)q(x) + b(x)q′(x) = d module p, we see that q̄′(z0) 6= 0,
whence z0 is a simple root of q(x) modulo p. Thus, by Hensel’s Lemma, there exists
α ∈ z0 + pZp such that q(α) = 0. Therefore by the statement we have already proved,
Pq(x) ⊆ Mp,α. This containment is proper because Mp,α lies over (p). Hence the ideals
described in part (2) are the only maximal ideals of Int(Z). �

Exercises

Exercise 1. Let R be a Noetherian ring, and let I be a nonzero ideal of R. Prove that
the addition and multiplication of R are continuous with respect to the I-adic topology.
Deduce that R is a topological ring with respect to this topology.

Exercise 2. For p ∈ P and n ∈ N, let f be a polynomial in Int(Z) with deg f < pn.
Prove that |f(b)− f(a)|p ≤ pn−1|b− a|p for all a, b ∈ Z.

Exercise 3. Show that the polynomial x2 + x− 6 does not have any simple root in Z5

modulo 5Z5 even though it has a root in Z5. Deduce that we cannot always use Hensel’s
Lemma to argue the existence of roots of certain polynomials.

Exercise 4. Let p be an odd prime, and consider the polynomial q(x) = x2 − x + p ∈
Z[x], which is irreducible in Q[x]. Prove that the prime ideal Pq(x) of Int(Z) is contained
in two different maximal ideals of Int(Z) lying over (p).
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