IDEAL THEORY AND PRÜFER DOMAINS

FELIX GOTTI

Integer-Valued Polynomials I

The goal of this final lecture is to give a brief introduction to rings of integer-valued polynomials. Throughout this section, R is an integral domain with quotient field K. The ring

$$
\operatorname{Int}(R):=\{p(x) \in K[x] \mid p(R) \subseteq R\}
$$

is called the ring of integer-valued polynomials of R. We will conclude this lecture proving that the ring of integer-valued polynomial of a Dedekind domain with finite residue fields is a Prüfer domain. In particular, $\operatorname{Int}(\mathbb{Z})$ is a Prüfer domain. Here we will also describe the spectrum of $\operatorname{Int}(S, R)$.

Uniform Continuity and Stone-Weierstrass Theorem. Let R be a Noetherian ring, and let I be an ideal of R. By Krull Intersection Theorem, $\bigcap_{n \in \mathbb{N}} I^{n}=(0)$. Then we can define $w_{I}: R \rightarrow \mathbb{N}_{0}$ by $w_{I}(r)=\sup \left\{n \in \mathbb{N}_{0} \mid r \in I^{n}\right\}$ if $r \neq 0$ and $w_{I}(0)=\infty$. Using w_{I} one can define a metric on R by setting $|r|_{I}:=e^{-w_{I}(r)}$ and

$$
\begin{equation*}
d(r, s)=|r-s|_{I}=e^{-w(r-s)} \tag{0.1}
\end{equation*}
$$

for all $r, s \in R$, with the convention $e^{-\infty}=0$. With d defined as in (0.1), the ring R becomes a metric space; indeed, the following properties can be easily verified:

- $d(r, s)=0$ if and only if $r=s$,
- $d(r, s)=d(s, r)$, and
- $d(r, t) \leq \sup \{d(r, s), d(s, t)\} \leq d(r, s)+d(s, t)$
for all $r, s, t \in R$. The topology on R induced by the distance d is called the I-adic topology, and R is a topological ring with respect to the I-adic topology.

Proposition 1. Let R be a Noetherian domain, and let I be an ideal of R. Then every $f \in \operatorname{Int}(R)$ is uniformly continuous on R with respect to the I-adic topology.
Proof. Take $f \in \operatorname{Int}(R)$, and fix $\epsilon>0$. Then take $d \in R$ such that $d f(x) \in R[x]$. By virtue of Artin-Rees Lemma, there is a $k \in \mathbb{N}_{0}$ such that $I^{n+k} \cap d R=I^{n}\left(I^{k} \cap d R\right)$ for every $n \in \mathbb{N}_{0}$. Now set $\delta:=e^{-\left(n_{0}+k\right)}$, where $n_{0} \in \mathbb{N}$ satisfies that $e^{-n_{0}}<\epsilon$. Now take $r, s \in R$ with $|r-s|_{I}<\delta$. It is not hard to verify that $r-s$ divides $d(f(r)-f(s))$ in R, that is, $d(f(r)-f(s)) \in(r-s) R$. This implies that $d(f(r)-f(s)) \in(r-s) R \subseteq I^{n_{0}+k}$, and so

$$
d(f(r)-f(s)) \in I^{n_{0}+k} \cap d R=I_{1}^{n_{0}}\left(I^{k} \cap d R\right) \subseteq d I^{n_{0}} .
$$

As a consequence, $f(r)-f(s) \in I^{n_{0}}$, and we see that $|f(r)-f(s)|_{I} \leq e^{-n_{0}}<\epsilon$. Hence we conclude that f is uniformly continuous on R in the I-adic topology.

Corollary 2. Every polynomial in $\operatorname{Int}(\mathbb{Z})$ is uniformly continuous as a function on \mathbb{Z}_{p} with respect to the p-adic topology.

For every compact subset K of \mathbb{R}, the ring of polynomials $\mathbb{R}[x]$ is dense in the metric space $C(K, \mathbb{R})$ consisting of all continuous real-valued functions on K with respect to the uniform convergence topology. This is known as the Stone-Weierstrass Theorem. A parallel result for the p-adic completion of \mathbb{Q} was proved in 1944 by Dieudonné [3, Theorem 4]: $\mathbb{Q}_{p}[x]$ is dense in $C\left(K, \mathbb{Q}_{p}\right)$ for every compact subset K of \mathbb{Q}_{p} with respect to the p-adic topology. Our next theorem is a related version of the Stone-Weierstrass Theorem for rings of integer-valued polynomials, due to Mahler [4, Theorem 1]. Since \mathbb{Z}_{p} is the closure of \mathbb{Z} in \mathbb{Q}_{p} and \mathbb{Z}_{p} is a complete metric space, by virtue of Proposition 1 , every polynomial in $\operatorname{Int}(\mathbb{Z})$ uniquely extends as a continuous function to a function in $C\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$. Thus, we can assume that $\operatorname{Int}(\mathbb{Z}) \subseteq C\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$.
Theorem 3. For each $p \in \mathbb{P}$, the ring of integer-valued polynomials $\operatorname{Int}(\mathbb{Z})$ is dense in $C\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ with respect to the uniform convergence topology.
Proof. Fix $p \in \mathbb{P}$ and $n \in \mathbb{N}$, and then set $U_{i}:=i+p^{n} \mathbb{Z}_{p}$ for every $i \in \llbracket 0, p^{n}-1 \rrbracket$. Note that for each U_{i} is a clopen ball in \mathbb{Z}_{p} with respect to the p-adic topology and, in addition, \mathbb{Z}_{p} is the disjoint union of all these balls. Now let $\chi_{i}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ be the characteristic functions of U_{i}, that is, $\chi_{i}(x)=1$ if $x \in U_{i}$ and $\chi_{i}(x)=0$ otherwise. Clearly, $\chi_{i} \in C\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ for every $i \in \llbracket 0, p^{n}-1 \rrbracket$. We will argue now that each χ_{i} is an integral combination of the binomial functions $\binom{x}{0}, \ldots,\binom{x}{p^{n}-1}$ modulo p. Since $\operatorname{deg}\binom{x}{k}=k<p^{n}$ for every $k \in \llbracket 0, p^{n}-1 \rrbracket$, it is not hard to argue that for every $a, b \in \mathbb{Z}$,

$$
\begin{equation*}
\left|\binom{b}{k}-\binom{a}{k}\right|_{p} \leq p^{n-1}|b-a|_{p} \tag{0.2}
\end{equation*}
$$

(see Exercise 2). Since \mathbb{Z}_{p} is the closure of \mathbb{Z} in \mathbb{Q}_{p}, we obtain that (0.2) also holds for every $a, b \in \mathbb{Z}_{p}$. Then if $a, b \in U_{i}$ for some $i \in \llbracket 0, p^{n}-1 \rrbracket$, then the fact that $v_{p}(b-a) \geq n$ ensures that

$$
\left|\binom{b}{k}-\binom{a}{k}\right|_{p} \leq p^{n-1}|b-a|_{p} \leq p^{-1}
$$

which means that $\binom{x}{k}$ is constant on U_{i} modulo p. Therefore for every $k \in \llbracket 0, p^{n}-1 \rrbracket$ there is a function $\delta_{k} \in C\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ such that

$$
\begin{equation*}
\binom{x}{k}=p \delta_{k}+\sum_{i=0}^{p^{n}-1}\binom{i}{k} \chi_{i} \tag{0.3}
\end{equation*}
$$

We can write the identity (0.3) using matrix notation as $B=p D+M X$, where B, D, and X are the column vectors $\left.\binom{x}{0}, \ldots,\binom{x}{p^{n}-1}\right)^{T},\left(\delta_{0}, \ldots, \delta_{p^{n}-1}\right)^{T}$, and $\left(\chi_{0}, \ldots, \chi_{p^{n}-1}\right)^{T}$,
respectively, and M is the square matrix with entry $\binom{i}{k}$ in the position (k, i). Observe that M is upper triangular with 1's in its main diagonal. Thus, M is invertible, and $X=M^{-1} B-p M^{-1} D$. After unfolding this matrix identity, we find that for every $i \in \llbracket 0, p^{n}-1 \rrbracket$ there is a function $\sigma_{i} \in C\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ such that

$$
\chi_{i}=p \sigma_{i}+\sum_{i=0}^{p^{n}-1} c_{i k}\binom{x}{k}
$$

where $c_{i k} \in \mathbb{N}_{0}$ for every $k \in \llbracket 0, p^{n}-1 \rrbracket$. Since $\left\{\binom{x}{k}: k \in \mathbb{N}_{0}\right\}$ is a \mathbb{Z}-basis for $\operatorname{Int}(\mathbb{Z})$, every characteristic function can be approximated modulo p in $C\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ by an integer-valued polynomial.

Now suppose that $\phi_{0} \in C\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$. Since \mathbb{Z}_{p} is compact, ϕ_{0} is uniformly continuous and, therefore, we can take $n \in \mathbb{N}$ large enough so that ϕ_{0} is constant modulo p on U_{i} for every $i \in \llbracket 0, p^{n}-1 \rrbracket$. Therefore ϕ_{0} equals modulo p an integral linear combination of the characteristic functions $\chi_{1}, \ldots, \chi_{p^{n}-1}$, and so we can take $f_{0} \in \operatorname{Int}(\mathbb{Z})$ such that $\phi_{0}=f_{0}+p \phi_{1}$ for some $\phi_{1} \in C\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$. Now we can repeat the same argument for ϕ_{1} to obtain $f_{1} \in \operatorname{Int}(\mathbb{Z})$ and $\phi_{2} \in C\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ such that $\phi_{0}=f_{0}+p f_{1}+p^{2} \phi_{2}$. Continuing in this fashion, for every $n \in \mathbb{N}_{0}$ we find $f_{0}, \ldots, f_{n} \in \operatorname{Int}(\mathbb{Z})$ and $\phi_{n+1} \in C\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ such that $\phi_{0}=p^{n+1} \phi_{n+1}+\sum_{i=0}^{n} p^{i} f_{i}$. Hence for every $n \in \mathbb{N}$, there exists $g \in \operatorname{Int}(\mathbb{Z})$ such that $v_{p}\left(\phi_{0}(x)-g(x)\right) \geq n+1$ for every $x \in \mathbb{Z}_{p}$. This allows us to conclude that $\operatorname{Int}(\mathbb{Z})$ is dense in $C\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$.
Corollary 4. Let U_{1}, \ldots, U_{k} be disjoint open subsets covering \mathbb{Z}_{p}, and let c_{1}, \ldots, c_{k} be nonnegative integers. Then there exists $f(x) \in \operatorname{Int}(\mathbb{Z})$ such that $v_{p}(f(x))=c_{i}$ for all $x \in U_{i}$ and $i \in \llbracket 1, k \rrbracket$.

Proof. Set $n:=1+\max \left\{c_{i}: i \in \llbracket 1, k \rrbracket\right\}$. Now consider the function $\varphi=\sum_{i=1}^{k} p^{c_{i}} \chi_{i}$, where χ_{i} is the characteristic function of U_{i}. It is clear that $\varphi \in C\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$. Therefore, Stone-Weierstrass Theorem guarantees the existence of $f \in \operatorname{Int}(\mathbb{Z})$ such that $|\varphi-f|_{p}<$ p^{-n}, and so $v_{p}\left(p^{c_{i}}-f(x)\right) \geq n>c_{i}$ for all $x \in U_{i}$ and $i \in \llbracket 1, k \rrbracket$. This implies that $v_{p}(f(x))=c_{i}$ whenever $x \in U_{i}$ and $i \in \llbracket 1, k \rrbracket$.

Hensel's Lemma. In this subsection, we will discuss Hensel's lemma, which will be used to describe the spectrum of $\operatorname{Int}(\mathbb{Z})$ in the next subsection.
Lemma 5. Let R be a commutative ring with identity, and let $f \in R[x]$. Then there exists $g(x, y) \in R[x, y]$ such that

$$
f(x+y)=f(x)+f^{\prime}(x) y+g(x, y) y^{2} .
$$

Proof. After writing $f(x)=\sum_{i=0}^{n} c_{i} x^{i}$ for some $c_{0}, \ldots, c_{n} \in R$, we see that

$$
f(x+y)=\sum_{k=0}^{n} c_{k}(x+y)^{k}=c_{0}+\sum_{k=1}^{n}\left(c_{k}\left(x^{k}+k x^{k-1} y\right)+g_{i}(x, y) y^{2}\right)
$$

where $g_{i}(x, y) \in R[x, y]$ for every $i \in \llbracket 1, k \rrbracket$. Now we can set $g(x, y)=\sum_{k=1}^{n} g_{i}(x, y)$ to obtain the desired identity, namely,
$f(x+y)=\sum_{k=0}^{n} c_{k} x^{k}+\left(\sum_{k=1}^{n} c_{k} k x^{k-1}\right) y+\left(\sum_{k=1}^{n} g_{i}(x, y)\right) y^{2}=f(x)+f^{\prime}(x) y+g(x, y) y^{2}$.

We proceed to prove Hensel's Lemma.
Theorem 6 (Hensel's Lemma). Let f be a monic polynomial in $\mathbb{Z}_{p}[x]$, and suppose that $f(a) \equiv 0\left(\bmod p \mathbb{Z}_{p}\right)$ but $f^{\prime}(a) \not \equiv 0\left(\bmod p \mathbb{Z}_{p}\right)$ for some $a \in \mathbb{Z}_{p}$. Then there exists a unique $r \in \mathbb{Z}_{p}$ such that $f(r)=0$ and $r \equiv a\left(\bmod p \mathbb{Z}_{p}\right)$.

Proof. Let us argue that there exists a sequence $\left(a_{n}\right)_{n \in \mathbb{N}_{0}}$ with terms in \mathbb{Z}_{p} such that for every $n \in \mathbb{N}_{\geq 1}$,

$$
\begin{equation*}
a_{n} \equiv a_{n-1} \quad\left(\bmod p^{n-1} \mathbb{Z}_{p}\right) \quad \text { and } \quad f\left(a_{n}\right) \equiv 0 \quad\left(\bmod p^{n} \mathbb{Z}_{p}\right) \tag{0.4}
\end{equation*}
$$

We proceed by induction on n. For $n=1$, both conditions in (0.4) clearly hold after taking $a_{0}=a_{1}=a$. Suppose, therefore, that we have found $a_{0}, a_{1}, \ldots, a_{n}$ satisfying both conditions in (0.4) for some $n \in \mathbb{N}$. Since $f^{\prime}(a) \not \equiv 0\left(\bmod p \mathbb{Z}_{p}\right)$, the congruence equation $f^{\prime}(a) x \equiv-f\left(a_{n}\right) / p^{n}\left(\bmod p \mathbb{Z}_{p}\right)$ has a solution t_{n} in \mathbb{Z}_{p}. Now it follows from Lemma 5 that

$$
f\left(a_{n}+p^{n} t_{n}\right)=f\left(a_{n}\right)+f^{\prime}\left(a_{n}\right) p^{n} t_{n}+z p^{2 n} t_{n}^{2}
$$

for some $z \in \mathbb{Z}_{p}$, and so $f\left(a_{n}+p^{n} t_{n}\right) \equiv f\left(a_{n}\right)+f^{\prime}\left(a_{n}\right) p^{n} t_{n}\left(\bmod p^{n+1} \mathbb{Z}_{p}\right)$. Since $a_{n} \equiv a$ $\left(\bmod p \mathbb{Z}_{p}\right)$, it follows that $f^{\prime}\left(a_{n}\right) p^{n} t_{n} \equiv f^{\prime}(a) p^{n} t_{n}\left(\bmod p^{n+1} \mathbb{Z}_{p}\right)$. Set $a_{n+1}:=a_{n}+p^{n} t_{n}$. Because $f^{\prime}(a) t_{n} \equiv-f\left(a_{n}\right) / p^{n}\left(\bmod p \mathbb{Z}_{p}\right)$, we see that a_{n+1} is a root of f modulo $p^{n+1} \mathbb{Z}_{p}$:

$$
f\left(a_{n+1}\right)=f\left(a_{n}+p^{n} t_{n}\right) \equiv f\left(a_{n}\right)+f^{\prime}(a) p^{n} t_{n} \equiv 0 \quad\left(\bmod p^{n+1} \mathbb{Z}_{p}\right)
$$

Therefore $a_{n+1} \equiv a_{n}\left(\bmod p^{n} \mathbb{Z}_{p}\right)$ and $f\left(a_{n+1}\right) \equiv 0\left(\bmod p^{n+1} \mathbb{Z}_{p}\right)$, as desired. At this point, we have produced a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ whose terms satisfy the conditions in (0.4). The first condition in (0.4) ensures that $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{Z}_{p}. As \mathbb{Z}_{p} is complete, $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges. Let r denote the limit of $\left(a_{n}\right)_{n \in \mathbb{N}}$. Since for each $n \in \mathbb{N}$, the congruence equality $a_{n+k} \equiv a_{n}\left(\bmod p^{n} \mathbb{Z}_{p}\right)$ holds for every $k \in \mathbb{N}$, after taking limits we obtain $r \equiv a_{n}\left(\bmod p^{n} \mathbb{Z}_{p}\right)$ and, in particular, $r \equiv a\left(\bmod p \mathbb{Z}_{p}\right)$. Also, for each $n \in \mathbb{N}$, after applying f to both sides of $r \equiv a_{n}\left(\bmod p^{n} \mathbb{Z}_{p}\right)$, we obtain that $f(r) \equiv f\left(a_{n}\right) \equiv 0\left(\bmod p^{n} \mathbb{Z}_{p}\right)$, that is, $f(r) \in \bigcap_{n \in \mathbb{N}} p^{n} \mathbb{Z}_{p}$. Hence $f(r)=0$.

Finally, let us prove that r is the unique element of \mathbb{Z}_{p} satisfying the desired properties. To do so, suppose that $r^{\prime} \in \mathbb{Z}_{p}$ satisfies that $f\left(r^{\prime}\right)=0$ and $r^{\prime} \equiv a\left(\bmod p \mathbb{Z}_{p}\right)$. Proving that $r^{\prime}=r$ amounts to verifying that $r^{\prime} \equiv r\left(\bmod p^{n} \mathbb{Z}_{p}\right)$ for every $n \in \mathbb{N}$. We proceed by induction. It is clear that $r^{\prime} \equiv r\left(\bmod p \mathbb{Z}_{p}\right)$. Assume that $r^{\prime} \equiv r$
$\left(\bmod p^{n} \mathbb{Z}_{p}\right)$ for some $n \in \mathbb{N}$, and write $r^{\prime}=r+p^{n} z_{n}$ for some $z_{n} \in \mathbb{Z}_{p}$. Using Lemma 5 and the fact that $f\left(r^{\prime}\right)=f(r)=0$, we see that

$$
0=f\left(r^{\prime}\right)=f\left(r+p^{n} z_{n}\right) \equiv f(r)+f^{\prime}(r) p^{n} z_{n}=f^{\prime}(r) p^{n} z_{n} \quad\left(\bmod p^{n+1}\right)
$$

Hence $f^{\prime}(r) z_{n} \in p \mathbb{Z}_{p}$. Because $p \mathbb{Z}_{p}$ is prime, the fact that $f^{\prime}(r) \equiv f^{\prime}(a) \not \equiv 0\left(\bmod p \mathbb{Z}_{p}\right)$ ensures that $z_{n} \in p \mathbb{Z}_{p}$. Thus, $r^{\prime}=r+p^{n} z_{n} \equiv r\left(\bmod p^{n+1} \mathbb{Z}_{p}\right)$. Hence $r^{\prime} \equiv r$ $\left(\bmod p^{n} \mathbb{Z}_{p}\right)$ for every $n \in \mathbb{N}$, which implies that $r^{\prime}=r$.
Example 7. Consider the polynomial $f(x)=x^{2}+5 \in \mathbb{Z}[x]$, which does not have any root in \mathbb{Z} (indeed, $f(x)$ does not have any root in \mathbb{R}). We will use Hensel's Lemma to show that $f(x)$ has a root in \mathbb{Z}_{3}. This amounts to observing that 1 is a simple root of $f(x)$ modulo 3 , that is, $f(1) \equiv 0\left(\bmod 3 \mathbb{Z}_{3}\right)$ while $f^{\prime}(1)=2 \not \equiv 0\left(\bmod 3 \mathbb{Z}_{3}\right)$. As a consequence, -5 is a square in \mathbb{Z}_{3}.

Spectrum of $\operatorname{Int}(\mathbb{Z})$. We are in a position now to describe the spectrum and the maximal spectrum of the $\operatorname{ring} \operatorname{Int}(\mathbb{Z})$.

Theorem 8 (Spectrum of $\operatorname{Int}(\mathbb{Z}))$. The following statements hold.
(1) A nonzero prime ideal of $\operatorname{Int}(\mathbb{Z})$ lies over the ideal (0) in \mathbb{Z} if and only if it has the form

$$
P_{q(x)}:=\operatorname{Int}(\mathbb{Z}) \cap q(x) \mathbb{Q}[x]
$$

for some irreducible polynomial $q(x) \in \mathbb{Q}[x]$. In addition, for any two distinct monic irreducible polynomials $q(x)$ and $r(x)$ of $\mathbb{Q}[x]$, the ideals $P_{q(x)}$ and $P_{r(x)}$ are different.
(2) A prime ideal of $\operatorname{Int}(\mathbb{Z})$ lies over the ideal (p) in \mathbb{Z} for some $p \in \mathbb{P}$ if and only if it has the form

$$
M_{p, \alpha}:=\left\{f \in \operatorname{Int}(\mathbb{Z}): f(\alpha) \in p \mathbb{Z}_{p}\right\}
$$

for some $\alpha \in \mathbb{Z}_{p}$, in which case it is maximal. For any distinct pairs (p, α) and ($p^{\prime}, \alpha^{\prime}$), the ideals $M_{p, \alpha}$ and $M_{p^{\prime}, \alpha^{\prime}}$ are different.
(3) The ideal $P_{q(x)}$ is contained in $M_{p, \alpha}$ if and only if $q(\alpha)=0$. Also, the maximal ideals of $\operatorname{Int}(\mathbb{Z})$ are precisely those of the form $M_{p, \alpha}$.
Proof. (1) It is clear that $P_{q(x)}$ lies over (0) in \mathbb{Z}. Moreover, after setting $S=\mathbb{Z} \backslash\{0\}$, we see that the prime ideals of $\operatorname{Int}(\mathbb{Z})$ lying over (0) are precisely the prime ideals of $\operatorname{Int}(\mathbb{Z})$ that do not intersect S and, therefore, are in one-to-one correspondence with the prime ideals of $S^{-1} \operatorname{Int}(\mathbb{Z})=\mathbb{Q}[x]$. Thus, the nonzero prime ideals of $\operatorname{Int}(\mathbb{Z})$ are precisely the $P_{q(x)}$, which are the contractions of the nonzero prime ideals of $\mathbb{Q}[x]$. The last statement follows immediately as two principal prime ideals $q(x) \mathbb{Q}[x]$ and $r(x) \mathbb{Q}[x]$ are equal if and only if $r(x)=q(x)$.
(2) Fix $p \in \mathbb{P}$ and $\alpha \in \mathbb{Z}_{p}$. Observe that the map $\varphi: \operatorname{Int}(\mathbb{Z}) \rightarrow \mathbb{Z}_{p} / p \mathbb{Z}_{p}$ defined by $\varphi(f)=f(\alpha)+p \mathbb{Z}_{p}$ is a ring homomorphism whose kernel is $M_{p, \alpha}$. As \mathbb{Z}_{p} is the disjoint
union of the balls $i+p \mathbb{Z}_{p}$ (for $\left.i \in \llbracket 0, p-1 \rrbracket\right)$, we see that $\varphi(X-j+1)=1+p \mathbb{Z}_{p}$, where $j \in \llbracket 1, k \rrbracket$ is chosen so that $\alpha+p \mathbb{Z}_{p}=j+p \mathbb{Z}_{p}$. Hence φ is surjective and, therefore, $\operatorname{Int}(\mathbb{Z}) / M_{p, \alpha} \cong \mathbb{Z}_{p} / p \mathbb{Z}_{p} \cong \mathbb{F}_{p}$. Thus, $M_{p, \alpha}$ is a maximal ideal. Also, it is clear that $M_{p, \alpha}$ lies over (p).

Now let us argue that the $M_{p, \alpha}$ are the only prime ideals of $\operatorname{Int}(\mathbb{Z})$ lying over (p). Suppose, by way of contradiction, that P is a prime ideal of $\operatorname{Int}(\mathbb{Z})$ lying over (p) such that $P \neq M_{p, \alpha}$ for any $\alpha \in \mathbb{Z}_{p}$. Then for each $\alpha \in \mathbb{Z}_{p}$, we can take $f_{\alpha} \in M_{p, \alpha} \backslash P$. Now for each $\alpha \in \mathbb{Z}_{p}$, the continuity of f_{α} guarantees the existence of an open U_{α} containing α such that $v_{p}\left(f_{\alpha}(x)\right) \geq 1$ for all $x \in U_{\alpha}$. The compactness of \mathbb{Z}_{p} ensures the existence of $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{Z}_{p}$ such that $\mathbb{Z}_{p}=\bigcup_{i=1}^{k} U_{\alpha_{i}}$. Now set $f=f_{\alpha_{1}} \cdots f_{\alpha_{k}}$. Then $v_{p}(f(x))=\sum_{i=1}^{k} v_{p}\left(f_{\alpha_{i}}(x)\right) \geq 1$ for all $x \in \mathbb{Z}_{p}$. As a result, we see that $f / p \in \operatorname{Int}(\mathbb{Z})$, which implies that $f=p(f / p) \in P$. Now the fact that $f_{\alpha_{i}} \notin P$ for any $i \in \llbracket 1, k \rrbracket$ contradicts that the ideal P is prime. Hence the only prime ideals of $\operatorname{Int}(\mathbb{Z})$ over (p) in \mathbb{Z} are the $M_{p, \alpha}$ with $\alpha \in \mathbb{Z}_{p}$.

Suppose now that $M_{p, \alpha}=M_{p, \beta}$ for some $p \in \mathbb{P}$ and $\alpha, \beta \in \mathbb{Z}_{p}$. Then $v_{p}(f(\alpha)) \geq 1$ if and only if $v_{p}(f(\beta)) \geq 1$ for every $f \in \operatorname{Int}(\mathbb{Z})$. Now if $\alpha \neq \beta$, then we could take $k \in \mathbb{N}$ large enough so that the clopen balls $\alpha+p^{k} \mathbb{Z}_{p}$ and $\beta+p^{k} \mathbb{Z}_{p}$ are disjoint, and by virtue of Corollary 4 , we could find a polynomial $f \in \operatorname{Int}(\mathbb{Z})$ with $v_{p}(f(\alpha))=0$ and $v_{p}(f(\beta))=1$.
(3) It is clear that the ideal $P_{q(x)}$ is contained in $M_{p, \alpha}$ provided that $q(\alpha)=0$. To argue the converse, assume that $P_{q(x)} \subseteq M_{p, \alpha}$ for some $p \in \mathbb{P}$ and $\alpha \in \mathbb{Z}_{p}$. Now suppose, by way of contradiction, that $q(\alpha) \neq 0$. After replacing $q(x)$ by a suitable integer multiple, we can assume that $q(x) \in \mathbb{Z}[x] \cap P_{q(x)}$. Set $n:=v_{p}(q(\alpha)) \in \mathbb{N}_{0}$. As $q \in C\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$, there is a clopen subset U of \mathbb{Z}_{p} containing α such that $v_{p}(q(x))=n$ for all $x \in U$. Then Corollary 4 guarantees the existence of $f \in \operatorname{Int}(\mathbb{Z})$ such that $v_{p}(f(x))=0$ if $x \in U$ and $v_{p}(f(x))=n$ if $x \in \mathbb{Z}_{p} \backslash U$. Set $g=f / p^{n}$. Since $g q \in \operatorname{Int}(\mathbb{Z})$, it follows that $g q \in P_{q(x)}$. However, the fact that $v_{p}(g(\alpha) q(\alpha))=0$ implies that $g q \notin M_{p, \alpha}$. Therefore $P_{q(x)}$ is not contained in $M_{\alpha, p}$, which is a contradiction.

Finally, let $q(x)$ be an irreducible in $\mathbb{Q}[x]$, and let us argue that the prime ideal $P_{q(x)}$ is not maximal. After replacing $q(x)$ by an integer multiple we can actually assume that $q(x) \in \mathbb{Z}[x]$. We split the rest of the proof into two parts. First, we argue that the set

$$
P:=\{p \in \mathbb{P}: p \mid q(z) \text { for some } z \in \mathbb{Z}\}
$$

is infinite. It is clear that $P=\mathbb{P}$ when $q(x) \in x \mathbb{Z}[x]$, as in this case $q(x)= \pm x$. Suppose, therefore, that $q(x)=\sum_{i=0}^{n} c_{i} x^{i}$ for some $c_{0}, \ldots, c_{n} \in \mathbb{Z}$ with $c_{0} \neq 0$. Assume now, towards a contradiction, that P is finite, and let m be the product of all the primes in P (it is clear that P is nonempty). Since $q(x)$ is not constant, we can take $j \in \mathbb{N}$ such that $q\left(c_{0} m^{j}\right) \neq \pm c_{0}$. Now observe that $q\left(c_{0} m^{j}\right)=c_{0}\left(1+m^{j} c\right)$ for some $c \in \mathbb{Z}$. As $q\left(c_{0} m^{j}\right) \neq \pm c_{0}$, we see that $\left|1+m^{j} c\right| \neq 1$, and so we can take $p \in \mathbb{P}$ dividing
$1+m^{j} c$. As $p \nmid m$, it follows that $p \notin P$, which contradicts that $p \mid q\left(c_{0} m^{j}\right)$. Hence $|P|=\infty$.

Since $q(x)$ is irreducible, $d:=\operatorname{gcd}\left(q(x), q^{\prime}(x)\right) \in \mathbb{Z}$. Take $a(x), b(x) \in \mathbb{Z}[x]$ such that $a(x) q(x)+b(x) q^{\prime}(x)=d$. Let p be a prime in P that does not divide d (which exists because $|P|=\infty$), and let $\bar{q}(x)$ and $\overline{q^{\prime}}(x)$ be the reductions of the polynomials $q(x)$ and $q^{\prime}(x)$ modulo p, respectively. By definition of P, there exists $z_{0} \in \mathbb{Z}$ such that $\bar{q}\left(z_{0}\right)=0$. After reducing $a(x) q(x)+b(x) q^{\prime}(x)=d$ module p, we see that $\bar{q}^{\prime}\left(z_{0}\right) \neq 0$, whence z_{0} is a simple root of $q(x)$ modulo p. Thus, by Hensel's Lemma, there exists $\alpha \in z_{0}+p \mathbb{Z}_{p}$ such that $q(\alpha)=0$. Therefore by the statement we have already proved, $P_{q(x)} \subseteq M_{p, \alpha}$. This containment is proper because $M_{p, \alpha}$ lies over (p). Hence the ideals described in part (2) are the only maximal ideals of $\operatorname{Int}(\mathbb{Z})$.

Exercises

Exercise 1. Let R be a Noetherian ring, and let I be a nonzero ideal of R. Prove that the addition and multiplication of R are continuous with respect to the I-adic topology. Deduce that R is a topological ring with respect to this topology.

Exercise 2. For $p \in \mathbb{P}$ and $n \in \mathbb{N}$, let f be a polynomial in $\operatorname{Int}(\mathbb{Z})$ with $\operatorname{deg} f<p^{n}$. Prove that $|f(b)-f(a)|_{p} \leq p^{n-1}|b-a|_{p}$ for all $a, b \in \mathbb{Z}$.

Exercise 3. Show that the polynomial $x^{2}+x-6$ does not have any simple root in \mathbb{Z}_{5} modulo $5 \mathbb{Z}_{5}$ even though it has a root in \mathbb{Z}_{5}. Deduce that we cannot always use Hensel's Lemma to argue the existence of roots of certain polynomials.

Exercise 4. Let p be an odd prime, and consider the polynomial $q(x)=x^{2}-x+p \in$ $\mathbb{Z}[x]$, which is irreducible in $\mathbb{Q}[x]$. Prove that the prime ideal $P_{q(x)}$ of $\operatorname{Int}(\mathbb{Z})$ is contained in two different maximal ideals of $\operatorname{Int}(\mathbb{Z})$ lying over (p).

References

[1] P. J. Cahen and J. L. Chabert: Integer-Valued Polynomials, Amer. Math. Soc. Surveys and Monographs, Vol. 48, Providence, 1997.
[2] P. J. Cahen and J. L. Chabert: What you should know about integer-valued polynomials, Amer. Math. Monthly 123 (2016) 311-337.
[3] J. Dieudonné: Sur les fonctions continues p-adiques, Bull. Sci. Math. 68 (1944) 79-95.
[4] K. Mahler: An interpolation series for continuous functions of a p-adic variable, J. Reine Angew. Math. 199 (1958) 23-34.

Department of Mathematics, MIT, Cambridge, MA 02139
Email address: fgotti@mit.edu

