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Almost Dedekind Domains

Throughout this lecture, R is an integral domain. Recall that qf(R) denotes the
quotient field of R.

Definition 1. An integral domain R that is not a field is an almost Dedekind domain
if RM is a Dedekind domain for every maximal ideal M of R.

We have excluded fields from the class of almost Dedekind domains, but it is worth
noticing that some authors may prefer to allow fields to be almost Dedekind domains.
Informally, an almost Dedekind domain is an integral domain that looks locally like a
Dedekind domain. In particular, every almost Dedekind domain has Krull dimension
one. Observe that we can rephrase the definition of an almost Dedekind domain as an
integral domain whose localization at any maximal/prime ideal is a DVR.

It turns out that Dedekind domains are precisely the Noetherian almost Dedekind
domains.

Proposition 2. An integral domain R is a Dedekind domain if and only if R is Noe-
therian and almost Dedekind.

Proof. If R is a Dedekind domain, then R is Noetherian and RM is a local PID for every
maximal ideal M of R. As local PIDs are DVRs, R is almost Dedekind, and so the
direct implication follows. The reverse implication is also immediate as DVRs are PIDs
and we have seen before that Dedekind domains can be characterized as Noetherian
domains whose localizations at maximal ideals are PIDs. �

Every overring of an almost Dedekind domain is an almost Dedekind domain.

Proposition 3. Every overring of an almost Dedekind domain is an almost Dedekind
domain.

Proof. Let R an almost Dedekind domain, and let S be an overring of R. Let Q be
a prime ideal of S. Then P := R ∩ Q is a prime ideal of R and, therefore, RP is a
Dedekind domain. Since R \ P = R \ Q ⊆ S \ Q, we see that SQ is an overring of
RP . Now the fact that RP is a Dedekind domain ensures that SQ is also a Dedekind
domain. As Q was chosen to be an arbitrary prime ideal of S, we conclude that S is
an almost Dedekind domain. �

1



2 F. GOTTI

Here is a useful characterization of an almost Dedekind domain in terms of its pri-
mary ideals.

Proposition 4. Let R be an integral domain that is not a field. Then R is an almost
Dedekind domain if and only if R is one-dimensional and every primary ideal is a
power of a prime ideal.

Proof. For the direct implication, suppose that R is an almost Dedekind domain. It is
clear that R is one-dimensional. Let Q be a primary ideal of R. Since M := RadQ is
a prime ideal, it must be maximal because R is one-dimensional. Then QM is an ideal
of RM and, because RM is a DVR, it follows that QM = Mn

M for some n ∈ N. Since Q
is primary, Q = QM ∩R = Mn

M ∩R = Mn. Hence every primary ideal of R is a power
of a prime ideal.

For the reverse implication, assume that R is a one-dimensional domain where each
primary ideal is a power of a prime ideal. Let M be a maximal ideal of R. Since RM

is one-dimensional and local, it follows that the radical of every ideal in RM is MM .
Since MM is maximal, every ideal of RM is MM -primary, and so it is the extension of
an M -primary ideal of R. Since every primary ideal of R is a power of a prime ideal,
the maximality of M ensures that the contraction of every ideal of RM is a power of M .
Thus, every ideal of RM has the form Mn

M for some n ∈ N. Then the poset of ideals
of RM is totally ordered, which means that RM is a valuation domain. In addition,
it is clear that every collection of ideals of RM has a maximal element, and so RM is
Noetherian. Since RM is a Noetherian valuation domain, it is a DVR. Hence R is an
almost Dedekind domain. �

We proceed to give two characterizations of almost Dedekind domains inside the
class of Prüfer domains.

Theorem 5. For an integral domain R that is not a field, the following conditions are
equivalent.

(a) R is an almost Dedekind domain.

(b) R is a Prüfer domain and
⋂

n∈N I
n = (0) for each proper ideal I of R.

(c) R is a Prüfer domain of dimension one without idempotent maximal ideals.

Proof. (a)⇒ (b): Prüfer domains are precisely the integral domains whose localizations
at maximal ideals are valuation domains. Hence R is a Prüfer domain. Now suppose
that I is a proper ideal of R, and let M be a maximal ideal of R containing I. Note that
I ⊆ IM ⊆ MM . Since RM is a Noetherian domain, it follows from Krull’s Intersection
Theorem that

⋂
n∈N I

n ⊆
⋂

n∈N M
n
M = (0).

(b) ⇒ (c): Let M be a maximal ideal of R. Note that M2 ( M as, otherwise,⋂
n∈N M

n
M = Mn 6= (0) in the Noetherian domain RM , which would contradict Krull’s

Intersection Theorem. Hence none of the maximal ideals of R is idempotent. Let us
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argue now that dimRM = 1. Observe that every power of M is an M -primary ideal
of R because R is a Prüfer domain, and so Mn

M ∩R = Mn for every n ∈ N. Therefore( ⋂
n∈N

Mn
M

)
∩R =

⋂
n∈N

(
Mn

M ∩R
)

=
⋂
n∈N

Mn = (0).

This implies that
⋂

n∈N M
n
M = (0). Since RM is a valuation domain, there is no proper

ideal strictly between (0) =
⋂

n∈N M
n
M and MM , which means that the only prime ideal

of RM is MM . Thus, RM has Krull dimension one for every maximal ideal M , and
so R has dimension one.

(c) ⇒ (a): Let Q be a primary ideal of R and set P := RadQ. Since Q is primary
and R has dimension one, P is a maximal ideal. Therefore P 6= P 2, and so the fact
that R is a Prüfer domain, guarantees that Q = P n for some n ∈ N. As every primary
ideal is a power of a prime ideal, it follows from Proposition 4 that R is an almost
Dedekind domain. �

One can also characterize almost Dedekind domains as those integral domains whose
multiplicative monoids of nonzero ideals are cancellative.

Proposition 6. Let R be an integral domain that is not a field. Then R is an almost
Dedekind domain if and only if the multiplicative monoid of nonzero ideals of R is
cancellative.

Proof. For the direct implication, suppose that R is an almost Dedekind domain, and
take ideals I, J , and K of R such that I 6= 0 and IJ = IK. Fix now a maximal
ideal M of R. After localizing at M , we obtain IMJM = IMKM . Since RM is a
Dedekind domain and IM is a nonzero ideal, JM = KM . Therefore JM = KM for every
maximal ideal M of R, which implies that J = K. Hence the monoid of nonzero ideals
of R is cancellative.

Conversely, suppose that the monoid of nonzero ideals of R is cancellative. In par-
ticular, every nonzero finitely generated ideal of R is cancellative and, therefore, R
is a Prüfer domain. Also, the fact that every nonzero ideal is cancellative immedi-
ately implies that no maximal ideal of R is idempotent. We proceed to show that
dimR = 1. To do this, take a prime ideal P of R, and then take x ∈ R \ P . Note
that (P + (x))3 = (P + (x))(P + (x2)), so the fact that P + (x) is cancellative ensures
that (P + (x))2 = P 2 + (x2), and so that xP ⊆ P 2 + (x2). Then for every y ∈ P , we
can take z ∈ P 2 and r ∈ R such that xy = z + rx2. Then rx2 = xy − z ∈ P , and so
the fact that x2 /∈ P implies that r ∈ P . Hence xP ⊆ P 2 + (x2)P , which implies that
x ∈ P + (x2). Then we can take s ∈ R such that x(1 − sx) ∈ P and, as x /∈ P , it
follows that 1 − sx ∈ P . This implies that R = P + (x). Thus, P must be maximal,
and so dimR = 1. �
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Exercises

Exercise 1. Let R be an integral domain that is not a field. Prove that R is an almost
Dedekind domain if and only if every ideal of R whose radical is prime is a power of
its radical.

Exercise 2. Let R be an almost Dedekind domain. Prove that R is a Dedekind domain
if and only if every nonzero proper ideal is contained in only finitely many maximal
ideals. Show that if R has only finitely many maximal ideals, then R is a PID.

Exercise 3. Let R be an integral domain with quotient field K, and let L be a finite
extension of K. Let T be the integral closure of R in L. Prove that if R is an almost
Dedekind domain, then T is also an almost Dedekind domain.
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