
IDEAL THEORY AND PRÜFER DOMAINS

FELIX GOTTI

Prüfer Domains II

Throughout this lecture, R is an integral domain. Recall that qf(R) denotes the
quotient field of R.

Primary Ideals. In the first part of this lecture we extend to Prüfer domains some of
the results on primary ideals that we have already established for valuation domains.

We have seen that if R is a valuation domain with a prime ideal P and a P -primary
ideal Q, then Q = (x)Q for every x ∈ R \ P . If R is a Prüfer domain instead, then
Q = (Q+ (x))Q under the same conditions.

Lemma 1. Let R be a Prüfer domain, and let P be a prime ideal of R. If Q is a
P -primary ideal, then Q = (Q+ (x))Q for every x ∈ R \ P .

Proof. Suppose that Q is a P -primary ideal of R, and take x ∈ R \ P . Let M be a
maximal ideal. If Q 6⊆ M , then both ideal extensions QM and Q2

M are zero, and so it
is clear that QM = ((Q + (x))Q)M . On the other hand, suppose that Q ⊆ M . In this
case, P = RadQ ⊆ M and, therefore, x /∈ PM . Since R is a Prüfer domain, RM is a
valuation domain, and so the equality QM = (x)MQM holds. Therefore

QM ⊆ Q2
M + (x)MQM = ((Q+ (x))Q)M .

Thus, in this case we also obtain that QM = ((Q+(x))Q)M . Since the maximal ideal M
was chosen arbitrarily, we conclude that Q = (Q+ (x))Q. �

We have also come across the following lemma in the context of valuation domains.

Lemma 2. Let R be a Prüfer domain, and let Q be a primary ideal of R. If I is an
ideal of R such that I ( RadQ, then In ⊆ Q for some n ∈ N.

Proof. Take an ideal I of R such that I is strictly contained in P := RadQ. Since Q is
primary, P is prime, and soRP is a valuation domain. Suppose, by way of contradiction,
that In 6⊆ Q for any n ∈ N. From this we can infer that InP 6⊆ QP for any n ∈ N.
Now the fact that RP is a valuation domain ensures that QP ⊆

⋂
n∈N I

n
P , which is

prime. Hence PP = RadQP ⊆
⋂
n∈N I

n
P ⊆ IP , and so RadQ ⊆ I, which contradicts

that I ( RadQ. �

Further fundamental results about primary ideals of Prüfer domain are encapsulated
in the following theorem.
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Theorem 3. Let R be a Prüfer domain, and let P be a prime ideal of R. Then the
following statements hold.

(1) The product of P -primary ideals is a P -primary ideal.

(2) If Q is a P -primary ideal, then
⋂
n∈NQ

n is prime.

(3) If P is not idempotent, then the P -primary ideals of R are the powers of P .

(4) The intersection of all P -primary ideals of R is a prime ideal that contains each
prime ideal properly contained in P .

Proof. (1) Since we have already proved this statement in the context of valuation
domains, we only need to use the one-to-one correspondence between P -primary ideals
of R and PP -primary ideals of RP and the fact that RP is a valuation domain.

(2) Let Q be a P -primary ideal of R, and take x, y ∈ R with xy ∈ I :=
⋂
n∈NQ

n.
Since RP is a valuation domain,

⋂
n∈NQ

n
P is a prime ideal of RP , and so the fact

that xy ∈ IP ⊆
⋂
n∈NQ

n
P implies that either x or y belongs to

⋂
n∈NQ

n
P . Suppose,

without loss of generality, that x ∈ Qn
P for every n ∈ N. Then for each n ∈ N, we

can take sn /∈ R \ P such that snx ∈ Qn and, since Qn is P -primary (by part (1)) and
sn /∈ RadQn, we see that x ∈ Qn. Hence x ∈ I, and we can conclude that I is prime.

(3) By part (1), P and P 2 are distinct P -primary ideals of R and, therefore, PP and
P 2
P are distinct PP -primary ideals of RP , that is, PP is not an idempotent ideal of RP .

Since RP is a valuation domain, the PP -primary ideals of RP are precisely the powers
of PP . Since the PP -primary ideals of RP are in one-to-one correspondence with the
P -primary ideals of R, we conclude that the P -primary ideals of R are precisely the
powers of P .

(4) Exercise. �

Overrings of Prüfer Domains. Overrings of Prüfer domains are Prüfer domains,
and every Prüfer domain is integrally closed. In this section we argue these two facts
and use them to give further characterizations of a Prüfer domain.

Proposition 4. Every Prüfer domain is integrally closed.

Proof. Let R be a Prüfer domain, and let q be a nonzero element in qf(R) that is integral
over R. The R-submodule M := R[q] is finitely generated. Therefore it is a fractional
ideal of R, and so there is an r ∈ R such that rM is a finitely generated ideal of R.
As R is a Prüfer domain, there is a fractional ideal J such that (rJ)M = J(rM) = R.
Hence M is an invertible fractional ideal. This, along with the fact that M2 = M ,
implies that M ⊆ R. As a result, q ∈ R. Hence we conclude that R is integrally
closed. �

Our next goal is to study the overrings of a Prüfer domain.
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Proposition 5. Let R be an Prüfer domain, and let V be a valuation overring of R.
Then there exists a prime ideal of R such that V = RP .

Proof. We have seen that every valuation domain is local. Let M be the maximal ideal
of V , and set P = M ∩ R. To see that RP ⊆ V , take r/s ∈ RP with r ∈ R and
s ∈ R \ P . Since s ∈ R \ P , then s /∈ M . Therefore s ∈ V ×, which implies that
r/s = s−1r ∈ V .

To argue the reverse inclusion assume, by way of contradiction, that there is a v ∈ V
such that v /∈ RP . Since R is a Prüfer domain, RP is a valuation domain. This, along
with the fact that v /∈ RP , ensures that v−1 ∈ RP . Write v−1 = r/s for some r, s ∈ R
such that s /∈ P . As v /∈ RP , it follows that r ∈ P ⊆ M . Thus s = rv ∈ M ∩ R = P ,
which is a contradiction. �

Before giving further characterization of a Prüfer domain, let us argue the following
lemma.

Lemma 6. Let R be an integrally closed local domain, and let u ∈ qf(R)× be a root of
a polynomial in R[x] with at least one of the coefficients in R×. Then either u ∈ R or
u−1 ∈ R.

Proof. We use induction on the degree the polynomials described in the statement of the
lemma. The case when one of such polynomials has degree one follows easily. Assume
that the existence of a polynomial of degree at most n− 1 (for n ≥ 2) with u as a root
and a coefficient in R× guarantees that u ∈ R or u−1 ∈ R. Now take

∑n
i=0 cnx

n ∈ R[x]
to be an n-degree polynomial with u as a root and a coefficient in R×. If cn ∈ R×,
then u is integral over R and, as R is integrally closed, u ∈ R. Suppose, otherwise, that
cn /∈ R×. Since (cnu)n +

∑n−1
i=0 cic

n−i−1
n (cnu)i = 0, it follows that cnu is integral over R

and so cnu ∈ R. If cnu ∈ R×, then u−1 ∈ R. Then we assume that cnu /∈ R×. Observe
now that if cn−1 ∈ R×, then the fact that R is local implies that cnu + cn−1 ∈ R×,
and so the equality (cnu + cn−1)un−1 +

∑n−2
i=0 ciu

i = 0 guarantees that u ∈ R. Finally,
if cn−1 /∈ R×, then ci ∈ R× for some i ∈ J0, n − 2K, and so the induction hypothesis
applied to the polynomial (cnu + cn−1)xn−1 +

∑n−2
i=0 cix

i ensures that either u ∈ R or
u−1 ∈ R. �

Now we can characterize a Prüfer domain in terms of its overrings.

Theorem 7. For an integral domain R, the following statements are equivalent.

(a) R is a Prüfer domain.

(b) Every overring of R is a Prüfer domain.

(c) Every overring of R is integrally closed.

Proof. (a) ⇒ (b): Let T be an overring of R, and let M be a prime ideal of T . Set
P = M ∩ R. For S := R \ P , we observe that RP = S−1R ⊆ S−1T ⊆ TM . Since
R is a Prüfer domain, RP is a valuation domain. We have seen that the overrings
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of a valuation domain are in bijection with its prime ideals and can be obtained by
localizing at them. Therefore TM is the localization of RP at some prime ideal. Since
RP is a local domain, it follows that TM = RP . Since R is a Prüfer domain, TM = RP

is a valuation domain. As TM is a valuation domain for every prime ideal M of T , we
conclude that T is a Prüfer domain.

(b) ⇒ (c): This is clear as we have seen in Proposition 4 that every Prüfer domain
is integrally closed.

(c)⇒ (a): It suffices to prove that RM is a valuation domain for every maximal ideal
M of R. Let M be a maximal ideal of R, and set S := RM . Take u ∈ qf(S). Since
S[u2] is an overring of R, it must be integrally closed. As u is integral over S[u2], it
follows that u ∈ S[u2], and so u =

∑n
i=0 ciu

2i for some c0, . . . , cn ∈ S. Thus, u is a
root of the polynomial x −

∑n
i=0 cix

2i ∈ S[x]. Because S is an integrally closed local
domain and 1 ∈ S× is a coefficient of p(x), Lemma 6 guarantees that either u ∈ S or
u−1 ∈ S. Hence S = RM is a valuation domain, which concludes the proof. �

Corollary 8. Let R be a Prüfer domain, and let S be a submonoid of R∗. Then S−1R
is a Prüfer domain.

The following result can be used to construct Prüfer domains.

Theorem 9. Let R be a Prüfer domain, and let F be an algebraic extension of qf(R).
Then the integral closure of R in F is a Prüfer domain.

Proof. Let S denote the integral closure of R in F , and suppose that M is a maximal
ideal of S and set P = M ∩R. Take α ∈ F . As F is an algebraic extension of qf(R), we
see that α is a root of a nonzero polynomial p(x) in RP [x].Since P is a prime ideal of the
Prüfer domain R, the localization RP is a valuation domain. So after normalizing p(x)
we can assume that it has a coefficient that is a unit in RP . Observe that RP ⊆ SM
and, therefore, p(x) is a polynomial in SM [x] having a unit of SM as a coefficient. As
SM is an integrally closed local domain, it follows from Lemma 6 that either α ∈ SM
or α−1 ∈ SM . Hence SM is a valuation of F . As the localization of S at any maximal
ideal is a valuation domain, S must be a Prüfer domain. �

Exercises

Exercise 1. Let R be a Prüfer domain, and let P be a prime ideal of R. Prove that the
intersection of all P -primary ideals of R is a prime ideal that contains each prime ideal
properly contained in P . [Hint: Use the similar statement already proved for valuation
domains.]

Exercise 2. Let R be an integral domain, and let {Vγ : γ ∈ Γ} be the set consisting of
all the valuation overrings of R. For an ideal I of R, the set I ′ :=

⋂
γ∈Γ IVγ is called

the completion of I, and I is called complete if I ′ = I.
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(1) Prove that the following statements are equivalent.
(a) R is integrally closed.

(b) Every principal ideal of R is complete.

(c) There is a nonzero principal ideal of R that is complete.

(2) Prove that R is a Prüfer domain if and only if every ideal of R is complete.

Exercise 3. Let R be the direct limit of a directed system (Rγ)γ∈Γ of Prüfer domains.
Prove that R is also a Prüfer domain.
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