
IDEAL THEORY AND PRÜFER DOMAINS

FELIX GOTTI

Prüfer Domains I

Throughout this lecture, R is an integral domain. Recall that qf(R) denotes the
quotient field of R.

Definition and Examples. Prüfer domains, which are natural generalizations of
valuation domains, play a fundamental role in multiplicative ideal theory. In this
lecture, we start our discussion of Prüfer domains.

A fractional ideal I of R is invertible if there is a factional ideal J such that IJ = R,
in which case J = (R : I) = {r ∈ qf(R) : rI ⊆ R}. It is clear that the set of all
invertible fractional ideals of R is an abelian group with identity R. Observe that such
a group contains the set of all nonzero principal fractional ideals as a subgroup.

Definition 1. An integral domain R is a Prüfer domain if every nonzero finitely
generated ideal of R is invertible.

Fields and PIDs are clearly Prüfer domains. Recall that a Bezout domain is an inte-
gral domain where every finitely generated ideal is principal. Since nonzero principal
ideals are invertible, every Bezout domain is a Prüfer domain. In particular, every
valuation domain is a Prüfer domain. Let us briefly exhibit two further examples of
Prüfer domains.

Example 2. The set Int(R) := {p(x) ∈ Q[x] : p(Z) ⊆ Z} is a subring of Q[x] called
the ring of integer-valued polynomials. We shall prove soon enough that Int(R) is a
non-Noetherian Prüfer domain of Krull dimension 2.

Example 3. The ring consisting of all the entire function on the complex plane is a
Bezout domain of infinite Krull dimension. In particular, it is a Prüfer domain.

Although every PID is Prüfer, this is not the case for UFDs. The following example
sheds some light upon this observation.

Example 4. For a field F , consider the ring of polynomials R := F [x, y] and the ideal
I = Rx + Ry of R. If f ∈ qf(R) belongs to J := (R : I), then Rxf + Ryf ⊆ R, and
so xf ∈ R and yf ∈ R. Therefore f ∈ x−1R ∩ y−1R = R. Then J ⊆ R (indeed,
J = R), and we see that IJ ⊆ I. Thus, I is not an invertible ideal even though it is
finitely generated, and this allows us to conclude that R is not a Prüfer domain. Note,
however, that R is a UFD.
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Characterizations. We will discuss various of the many characterizations of Prüfer
domains. Let us start by the following.

Proposition 5. For an integral domain R, the following statements are equivalent.

(a) R is a Prüfer domain.

(b) Every two-generated ideal of R is invertible.

Proof. (a) ⇒ (b): This is obvious.

(b)⇒ (a): We will show that every nonzero finitely generated ideal of R is invertible
by using induction on the minimum number n of generators of such an ideal. It is
clear when n = 1, and it follows from part (b) when n = 2. Suppose, therefore,
that I can be generated by n elements, where n > 2, and assume that every nonzero
ideal of R that can be generated by less than n elements is invertible. Now write
I = Rc1+· · ·+Rcn for some nonzero elements c1, . . . , cn ∈ R. Set I1 := Rc1+· · ·+Rcn−1,
I2 := Rc2 + · · ·+Rcn, and I3 := Rc1 +Rcn. By induction, I1, I2, and I3 are invertible.
Then J := c1I

−1
1 I−13 +cnI

−1
2 I−13 is a fractional ideal of R. We claim that J is the inverse

of I. To show this, first observe that

IJ = (I1 + Rcn)c1I
−1
1 I−13 + (Rc1 + I2)cnI

−1
2 I−13

= c1I
−1
3 + c1cnI

−1
1 I−13 + c1cnI

−1
2 I−13 + cnI

−1
3

= c1I
−1
3 (R + cnI

−1
2 ) + cnI

−1
3 (R + c1I

−1
1 ).

As I1 and I2 are invertible ideals and c1 ∈ I1 and cn ∈ I2, it follows that c1I
−1
1 ⊆ R

and cnI
−1
2 ⊆ R. This, along with the previous chain of equalities, guarantees that

IJ = c1I
−1
3 + cnI

−1
3 = I3I

−1
3 = R. Hence I is an invertible ideal. �

We proceed to characterize Prüfer domains in terms of valuation domains.

Proposition 6. For an integral domain R, the following statements are equivalent.

(a) R is a Prüfer domain.

(b) RP is a valuation domain for every prime ideal P .

(c) RM is a valuation domain for every maximal ideal M .

Proof. (a) ⇒ (b): Assume that R is a Prüfer domain, and let P be a prime ideal
of R. Since RP is a local ring, it is enough to prove that it is a Bezout domain. Let
a1
s1
RP + · · ·+ ak

sk
RP be a nonzero finitely generated ideal of RP , where a1, . . . , ak ∈ I and

s1, . . . , sk ∈ R \ P . Then I := Ra1 + · · ·+ Rak satisfies that IP = a1
s1
RP + · · ·+ ak

sk
RP .

Since R is a Prüfer domain, I is invertible. Let J be a fractional ideal such that JI = R,
then (JRP )IP = RP , and so IP is invertible in RP . Since RP is local, IP is a principal
ideal. Hence RP is a valuation domain.

(b) ⇒ (c): This is clear.
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(c)⇒ (a): Assume, by way of contradiction, that there is a nonzero finitely generated
ideal I of R that is not invertible. Write I = Ra1+· · ·+Ran for a1, . . . , an ∈ R. Since I
is not invertible, IJ ( R, where J := (R : I). So there is a maximal ideal M of R such
that IJ ⊆M . Because the extension IM of I is a finitely generated ideal of the Bezout
domain RM , there is an a ∈ I satisfying IM = aRM . For each i ∈ J1, nK, we can now
take si ∈ R \M with siai ∈ aR. After setting s = s1 · · · sn, we see that sa−1ai ∈ R
for every i ∈ J1, nK, and so sa−1I ⊆ R. This implies that sa−1 ∈ J and, therefore,
s = a(sa−1) ∈ IJ ⊆M , which is a contradiction. �

Corollary 7. Let R be a Prüfer domain, and let P be a prime ideal of R. Then the
set of all P -primary ideals of R is totally ordered, and the intersection P ′ of all such
primary ideals is a prime ideal satisfying that there is no prime ideal strictly between
P ′ and P

Proof. It follows from Proposition 6 that RP is a valuation domain. Now the corollary
follows from the correspondence between the P -primary ideals of R and the PP -primary
ideals of RP , as we have seen before that the statement of the corollary holds for
valuation domains. �

Prüfer domains can also be characterized using cancellation of finitely generated
ideals.

Proposition 8. For an integral domain R, the following statements are equivalent.

(a) R is a Prüfer domain.

(b) For every nonzero finitely generated ideal I of R, whenever IB = IC for ideals
B and C the equality B = C must hold.

(c) For every finitely generated ideal I of R, whenever an ideal J is contained in I,
there is an ideal K such that J = IK.

Proof. (a) ⇒ (b): Let I be a finitely generated nonzero ideal of R, and let J and K
be ideals of R such that IJ = IK. Since R is a Prüfer domain, I is invertible and so
J = I−1IJ = I−1IK = K.

(b) ⇒ (a): Suppose, on the other hand, that every finitely generated nonzero ideal
of R is cancellative. We start by observing that if I is a nonzero finitely generated ideal
of R and IJ ⊆ IK for ideals J and K of R, then J ⊆ K. Indeed, IK = IJ + IK =
I(J + K) implies that K = J + K, which means that J ⊆ K.

To prove that R is Prüfer it suffices to argue that the localization of R at any prime
ideal is a valuation domain. Let P be a prime ideal of R. Take a, b ∈ R, and let us
show that either aRP ⊆ bRP or bRP ⊆ aRP . The assertion clearly holds when a = 0
or b = 0. So we assume that ab 6= 0. Note that Rab(Ra+Rb) ⊆ (Ra2 +Rb2)(Ra+Rb),
and so Rab ⊆ Ra2 + Rb2. Take x, y ∈ R such that ab = xa2 + yb2, and observe that
Ryb(Ra + Rb) ⊆ Ra(Ra + Rb). Therefore yb = ra for some r ∈ R, and we can write
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ab = xa2 + rab, that is, xa = b(1 − r). If r /∈ P , then a = b(y/r) ∈ bRP and so
aRP ⊆ bRP . On the other hand, if r ∈ P , then 1−r /∈ P and so b = ax/(1−r) ∈ aRP ,
which implies that bRP ⊆ aRP . Hence RP is a valuation domain for every prime
ideal P .

(a) ⇒ (c): Let I be a finitely generated ideal of R, and let J be an ideal of R
contained in I. If I is the zero ideal so is J , and we can take K = R (or any ideal
of R). If I is nonzero, then it is invertible and so we can take K to be I−1J .

(c) ⇒ (a): Finally, suppose that the statement (c) holds. We will show that every
localization of R at a prime ideal is a valuation. To do so, take a prime ideal P of R.
Take a, b ∈ R and let us verify that the principal ideals aRP and bRP are comparable.
Since Ra ⊆ Ra + Rb, there is an ideal I such that Ra = (Ra + Rb)I. After writing
a = xa+yb for some x, y ∈ I, we see that yb = a(1−x) ∈ aR. If x ∈ P , then 1−x /∈ P ,
and from a = by/(1 − x) ∈ bRP we obtain that aRP ⊆ bRP . On the other hand, if
x /∈ P , then bx ∈ bI ⊆ (Ra + Rb)I = Ra ensures that b ∈ aRP , that is, bRP ⊆ aRP .
Hence RP is a valuation domain for every prime ideal P . �

Finally, we characterize Prüfer domains by using certain distributivity laws.

Proposition 9. For an integral domain R, the following statements are equivalent.

(a) R is a Prüfer domain.

(b) A(B ∩ C) = AB ∩ AC for all ideals A,B, and C of R.

(c) A ∩ (B + C) = A ∩B + A ∩ C for all ideals A,B, and C of R.

Proof. (a) ⇒ (b): Suppose that R is a Prüfer domain, and let A,B, and C be ideals
of R. Let P be a maximal ideal of R. Since RP is a valuation domain by Proposition 6,
the ideals BRP and CRP of RP are comparable and, therefore,

A(B ∩ C)RP = ARP (BRP ∩ CRP ) = (ARP )(BRP ) ∩ (ARP )(CRP ) = (AB ∩ AC)RP .

Since the maximal ideal P was arbitrarily taken, the equality A(B ∩ C) = AB ∩ AC
must hold.

(b) ⇒ (a): Take C = Rc1 + Rc2 for some c1, c2 ∈ R, and let us check that C is
an invertible ideal. This is clear if C is principal. Therefore suppose that c1 6= 0 and
c2 6= 0. Set A = Rc1 and B := Rc2, and observe that AB ⊆ CA ∩ CB = C(A ∩ B),
and so AB = (A ∩B)C. As both A and B are invertible ideals,

C(A ∩B)B−1A−1 = ABB−1A−1 = R,

which implies that C is also an invertible ideal. Since every two-generated ideal of R
is invertible, it follows from Proposition 5 that R is a Prüfer domain.

(a) ⇒ (c): This follows the same argument used to establish (a) ⇒ (b).

(c) ⇒ (a): Fix a prime ideal P , and let us verify that RP is a valuation domain. To
do so, take a, b ∈ R and observe that, in light of the distributive law in (c),

Ra = Ra ∩ (Rb + R(a− b)) = (Ra ∩Rb) + (Ra ∩R(a− b)).



IDEAL THEORY AND PRÜFER DOMAINS 5

As a consequence, one can pick t ∈ Ra ∩ Rb and r ∈ R with r(a − b) ∈ Ra such that
a = t + r(a − b). Then we see that rb ∈ Ra and (1 − r)a ∈ Rb. Thus, if r ∈ P , then
1− r /∈ P , which implies that a ∈ bRP . On the other hand, if r /∈ P , then a− b ∈ aRP

and so b ∈ aRP . Therefore the ideals aRP and bRP are comparable. Because any two
principal ideals of RP are comparable, RP is a valuation domain, and it follows from
Proposition 6 that R is a Prüfer domain. �

Exercises

Exercise 1. Let R be a Prüfer domain, and let P be a prime ideal of R. Prove that
R/P is also a Prüfer domain.

Exercise 2. Let R be an integral domain. Prove that the following statements are
equivalent.

(1) R is a Prüfer domain.

(2) (J + K) : I = (J : I) + (K : I) for all ideals I, J , and K of R with I finitely
generated.

(3) I : (J ∩K) = (I : J) + (I : K) for all ideals I, J , and K of R with J and K
finitely generated.
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