
IDEAL THEORY AND PRÜFER DOMAINS

FELIX GOTTI

Dedekind Domains

Throughout this section, R is an integral domain. Recall that qf(R) denotes the
quotient field of R.

Dedekind Domains. It is natural to wonder which Prüfer domains are Noetherian
domains. Noetherian Prüfer domains are perhaps the best studied and understood
class of Prüfer domains; they are called Dedekind domains. We will use, however, a
more standard definition.

Definition 1. An integral domain is a Dedekind domain if it is a one-dimensional
integrally closed Noetherian domain.

Note that, according to our definition, fields are not Dedekind domains. There are
authors, however, who include fields in the class of Dedekind domains. One of the most
relevant classes of Dedekind domains is that consisting of rings of integers of algebraic
number fields.

Example 2. Let K be an algebraic number field, that is, a finite-dimensional field
extension of Q. The integral closure of Z in K is called the ring of integers of K
and is denoted by OK . As a consequence of Theorem 12, we will obtain that OK is a
Dedekind domain. The ring OK is called a quadratic ring of integers when K is two-
dimensional over Q, in which case, there exists a nonzero square-free integer d such
that K = Q(

√
d). In this case, it is not hard to verify that

OK = Z[
√
d] if d ≡ 2, 3 (mod 4) and OK = Z

[1 +√
d

2

]
if d ≡ 1 (mod 4).

The class of Dedekind domains also includes that of PIDs.

Proposition 3. Every PID that is not a field is a Dedekind domain.

Proof. Every PID is clearly Noetherian. Also, as PIDs are UFDs, they are integrally
closed. Finally, we know that every prime ideal in a PID is maximal, which implies
that every PID has dimension at most 1. Hence every PID that is not a field is a
Dedekind domain. □

The converse of Proposition 3 does not hold.
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Example 4. Let us verify that R := Z[
√
−5] is not a PID. One can easily check that

for every x := a+b
√
−5 ∈ R, the equality |R/Rx| = a2+5b2 holds. With this in mind,

let us argue that the ideal J := (2, 1 +
√
−5) is not principal. First, notice that

R/J ∼= Z[x]/(x2 + 5, 2, 1 + x) ∼= F2[x]/(x
2 + 5, 1 + x) = F2[x]/(1 + x) ∼= F2,

where F2 denotes the field of two elements. Therefore |R/J | = 2. Now our initial
observation, along with the fact that the equation a2 + 5b2 = 2 is not solvable in Z2,
ensures that J cannot be a principal ideal of R. Indeed, it can be proved that R is not
even a UFD as 6 = 2 · 3 = (1 +

√
−5)(1 −

√
−5) (see [1] for a better understanding

about factorizations in Z[
√
−5]).

We proceed to establish some useful characterizations of a Dedekind domain.

Theorem 5. For an integral domain R that is not a field, the following statements are
equivalent.

(a) R is a Dedekind domain.

(b) R is Noetherian and RP is a DVR/PID for every prime ideal P of R.

(c) Every nonzero ideal of R is invertible.

(d) Every nonzero fractional ideal of R is invertible

Proof. (a) ⇒ (b): Let R be a Dedekind domain, and let P be a prime ideal of R.
The properties of being Noetherian, being integrally closed, and having dimension at
most 1 are preserved under localization. Hence RP is a local ring having the mentioned
properties, and therefore RP is a DVR. Hence RP is a PID.

(b) ⇒ (c): Suppose, by way of contradiction, that there is a nonzero ideal I of R that
is not invertible. Since R is Noetherian, I = Ra1 + · · ·+Ran for some a1, . . . , an ∈ R.
Because I is not invertible, IJ ⊊ R, where J = {r ∈ qf(R) : rI ⊆ R}. Let P be a
maximal ideal of R such that IJ ⊆ P . By (b), the ideal extension IP of I is principal
in RP . Then we can take a ∈ I such that IP = aRP . For each i ∈ J1, nK, take ri ∈ R
and si /∈ P such that ai = a(ri/si), that is, siai ∈ Ra. Setting s = s1 . . . sn, we obtain
that sa−1ai ∈ R for every i ∈ J1, nK, which implies that sa−1I ⊆ R. Hence sa−1 ∈ J
and, as a result, s = asa−1 ∈ IJ ⊆ P , which is a contradiction. As a final note, we
observe that the argument used to prove this implication was also used to characterize
Prüfer domains as integral domains whose localizations at prime ideals are valuation
domains.

(c) ⇒ (a): We have seen before that every invertible ideal is finitely generated.
Thus, R is Noetherian. Now suppose that M is a maximal ideal of R. We can easily
verify that the extension of any invertible ideal of R is invertible in RM . Then each
nonzero ideal of RM is invertible. Since every invertible ideal of a local ring is prin-
cipal (see previous lectures), RM is a PID. Hence RM is both integrally closed and
1-dimensional. As M was an arbitrarily-chosen maximal ideal of R, it follows that R



IDEAL THEORY AND PRÜFER DOMAINS 3

is also integrally closed and 1-dimensional. Thus, we conclude that R is a Dedekind
domain.

(c) ⇔ (d): It suffices to show that (c) implies (d). To do so, let J be a nonzero
fractional ideal of R. Take r ∈ R such that I := rJ is a nonzero ideal of R. Since I
is invertible by hypothesis, rI−1 := r(R : I) is the inverse of the fractional ideal J :
indeed, (rI−1)J = I−1(rJ) = I−1I = R. □

The Noetherian Prüfer domains (which are not fields) are precisely the Dedekind
domains, as the following corollary indicates.

Corollary 6. An integral domain that is not a field is a Dedekind domain if and only
if it is a Noetherian Prüfer domain.

Proof. Let R be an integral domain that is not a field. If R is a Dedekind domain,
then R is Noetherian, and Theorem 5 ensures that RP is a PID for every prime ideal P .
Since every PID is a valuation domain, R is a Prüfer domain, and the direct implication
follows. For the reverse implication, it suffices to observe that in a Noetherian Prüfer
domain every nonzero ideal is finitely generated and so invertible, whence we are done
by virtue of Theorem 5. □

It turns out that Dedekind domains can be characterized as integral domains where
every nonzero ideal factors (uniquely) as a product of prime ideals. Before establishing
this characterization, let us argue the following lemma.

Lemma 7. For m,n ∈ N, let P1, . . . , Pm and Q1, . . . , Qn be invertible prime ideals of
an integral domain R. If P1 . . . Pm = Q1 . . . Qn, then m = n and Q1, . . . , Qm can be
relabeled so that Pi = Qi for every i ∈ J1, nK.

Proof. We proceed by induction on m. Suppose first that m = 1. As P1 is prime,
the inclusion Qi ⊆ P1 holds for some i ∈ J1, nK. After relabeling, one can assume
that i = 1. Since P1 = Q1 · · ·Qn ⊆ Q1, the equality P1 = Q1 holds. Multiplying
both sides of P1 = Q1 · · ·Qn by P−1

1 , we obtain that n = 1. Now suppose that the
statement of the lemma holds for m ∈ N, and let the equality P1 · · ·Pm+1 = Q1 · · ·Qn+1

hold for invertible prime ideals P1, . . . , Pm+1 and Q1, . . . , Qn+1 of R. After a possible
relabeling, we can assume that Pm+1 is minimal in the set {P1, . . . , Pm+1}. As Pm+1 is
prime, Qi ⊆ Pm+1 for some i ∈ J1, n+1K, and we can assume after a possible relabeling
that i = n + 1. Since Qn+1 is prime, Pj ⊆ Qn+1 for some j ∈ J1,m + 1K. Because
Pj ⊆ Qn+1 ⊆ Pm+1, the minimality of Pm+1 ensures that Pj = Pm+1, and so that
Qn+1 = Pm+1. Multiplying P1 · · ·Pm+1 = Q1 · · ·Qn+1 by P−1

m+1 and using the induction
hypothesis, we obtain that m + 1 = n + 1 and also that, after a possible relabeling of
Q1, . . . , Qm+1, the equality Pi = Qi holds for every i ∈ J1,m+ 1K. □

We are in a position to give two more characterizations of a Dedekind domain.



4 F. GOTTI

Theorem 8. For an integral domain R that is not a field, the following statements are
equivalent.

(a) R is a Dedekind domain.

(b) Every nonzero proper ideal of R factors into prime ideals.

(c) Every nonzero proper ideal of R factors uniquely (up to permutation) into prime
ideals.

Proof. (a) ⇒ (b): Suppose, by way of contradiction that there is a proper nonzero
ideal that does not factor into prime ideals. Let I be maximal among all such ideals,
which exists because R is Noetherian. Clearly, I is a proper ideal that is not prime.
Therefore I is properly contained in a maximal ideal P of R. Since P is invertible,
P−1I ⊆ P−1P = R. Therefore P−1I is an ideal of R, which contains I because
I = P (P−1I). In addition, I is properly contained in P−1I as I = P−1I would imply
that IP = I and so P = I−1I = R. Then P−1I factors as a product of prime ideals,
and so the same holds for I, a contradiction.

(b) ⇒ (a): We first argue that every invertible prime ideal of R is maximal. To
do this, let P be an invertible prime ideal and suppose, towards a contradiction, that
P+Rx ̸= R for some x ∈ R\P . Take prime ideals P1, . . . , Pm and Q1, . . . , Qn such that
P + Rx = P1 · · ·Pm and P + Rx2 = Q1 · · ·Qn. Note the the images π(P1), . . . , π(Pm)
and π(Q1), . . . , π(Qn) under the canonical homomorphism π : R → R/P are prime
ideals in the integral domain R/P . These prime ideals are also invertible as each of
them is a factor of one of the invertible ideals (π(x)) and (π(x2)). Because

π(Q1) · · · π(Qn) = (π(x2)) = (π(x))2 = π(P1)
2 · · · π(Pm)

2,

it follows from Lemma 7 that n = 2m and that, after a possible relabeling, π(Q2j−1) =
π(Q2j) = π(Pj) for every j ∈ J1,mK. As a result, Q2j−1 = Q2j = Pj for every j ∈ J1,mK.
Then P +Rx2 = (P +Rx)2, which implies that P ⊆ P +Rx2 = (P +Rx)2 ⊆ P 2+Rx.
Indeed, this implies that P ⊆ P 2 + Px because x /∈ P . Multiplying both sides of
the last inclusion by P−1, we obtain that P + Rx = R, a contradiction. Thus, every
invertible prime ideal of R is maximal.

By virtue of Theorem 5, finishing the proof of the current implication amounts
to verifying that every nonzero prime ideal of R is invertible. Let P be a nonzero
prime ideal of R, and take a nonzero element a ∈ P . Write Ra = P1 · · ·Pk for prime
ideals P1, . . . , Pk. The ideals P1, . . . , Pk are invertible because Ra is invertible. Since
P1 · · ·Pk ⊆ P , it follows that Pi ⊆ P for some i ∈ J1, kK. As Pi is an invertible prime
ideal, it is maximal. Hence P = Pi, and so P is invertible.

(b) ⇔ (c): It is clear that (c) implies (b). On the other hand, if (b) holds, then
(a) also holds, and so every nonzero ideal of R is invertible by Theorem 5. Thus, it
follows from Lemma 7 that every factorization of a nonzero proper ideal into prime
ideals must be unique, whence (b) implies (c). □
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We have seen in Proposition 3 that every PID that is not a field is a Dedekind
domain. On the other hand, not every UFD is a Dedekind domain as, for instance, the
UFD Q[x, y] has Krull dimension two. However, if a UFD is a Dedekind domain, then
it must be a PID.

Proposition 9. Let R be a Dedekind domain. Then R is a UFD if and only if it is a
PID.

Proof. It suffices to prove the direct implication as the reverse implication always holds.
Suppose that the Dedekind domain R is a UFD. Let P be a nonzero prime ideal of R,
and take a nonzero a ∈ P . As R is a UFD, we can write a = a1 · · · an for some
irreducibles a1, . . . , an of R. Since each of the elements a1, . . . , an is prime so are the
principal ideals Ra1, . . . , Ran. Because the product of these ideals equals Ra, which is
contained in the prime ideal P , the inclusion Rai ⊆ P holds for some index i ∈ J1, nK.
As both Rai and P are prime ideals of R and dimR = 1, we obtain that P = Rai.
Hence every prime ideal of R is principal. Finally, it follows from Theorem 8 that every
proper ideal of R factors into prime ideals, whence every ideal of R must be principal.
Thus, R is a PID. □

The previous proposition can be strengthened as the following remark indicates.

Remark 10. It is true, in fact, that if R is an integral domain with dimension at
most 1, then R is a UFD if and only if R is a PID.

Overrings and Extensions of Dedekind Domains. Overrings and certain exten-
sion rings of a Dedekind domain are Dedekind domain. Let us start with the overrings
of Dedekind domains.

Proposition 11. Any overring of a Dedekind domain is a Dedekind domain.

Proof. Let R be a Dedekind domain, and let T be an overring of R. Since R is a one-
dimensional Noetherian domain, so is T . Let Q be a prime ideal of T , and consider
the prime ideal P = Q ∩ R of R. Then RP ⊆ TQ ⊆ qf(R), that is, TQ is an overring
of RP . Since R is Dedekind, RP is a valuation domain, whence TQ is also a valuation
domain. Since T is Noetherian, TQ is a Noetherian valuation domain, that is, a DVR.
Hence T is a Dedekind domain by Theorem 5. □

Our final goal in this lecture is to prove that the integral closure of a Dedekind
domain in a finite-dimensional field extension of its quotient field is again a Dedekind
domain. In certain way, this result can be considered as the starting point of algebraic
number theory.

Theorem 12. Let R be a Dedekind domain, and let K be a finite-dimensional field
extension of the quotient field of R. Then the integral closure of R in K is a Dedekind
domain.
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Proof. Let F denote the quotient field of R (inside K), and let T denote the integral
closure of R in K. It is clear that T is integrally closed. To argue that T is a one-
dimensional Noetherian domain, take a basis {v1, . . . , vn} for K as a vector space
over F . As K is finite-dimensional over F , for every i ∈ J1, nK there is an element
ri ∈ R such that rivi ∈ T . After multiplying each element in the basis by r1 · · · rn,
we can assume that the basis is contained in T . Now set S := R[v1, . . . , vn], and
observe that the quotient field of S is K. As S is a finitely generated R-module, it
is a Noetherian ring. On the other hand, as S is an integral extension of the one-
dimensional domain R, it is also one-dimensional. Now the fact that T is an overring
of S, which is a one-dimensional Noetherian domain, allows us to conclude that T is
also a one-dimensional Noetherian domain. Hence T is a Dedekind domain. □

We conclude with the following promised corollary.

Corollary 13. For any algebraic number field K, the ring of integers OK is a Dedekind
domain.

Exercises

Exercise 1. Let R be a Dedekind domain, and let I and J be two nonzero ideals of R.
Prove the following statements.

(1) I ⊆ J if and only if I = JK for some ideal K of R.

(2) I + J is the greatest common divisor of I and J in the (free commutative)
monoid of nonzero ideals of R under ideal multiplication.

Exercise 2 (Chinese Remainder Theorem). Let R be a Dedekind domain, and let
P1, . . . , Pn be distinct prime ideals of R. Prove that if k1, . . . , kn ∈ N, then

R/(P k1
1 · · ·P kn

n ) ∼= R/P k1
1 × · · · ×R/P kn

n .

Exercise 3. Let R be a Dedekind domain, and let I be a nonzero ideal of R. Prove
the following statements.

(1) Every ideal of R/I is principal.

(2) For every nonzero a ∈ I, there is a b ∈ I such that I = Ra+Rb. In particular,
every ideal in a Dedekind domain can be generated by two elements.

Hint: Use the Chinese Remainder Theorem.

Exercise 4. Let R be an integral domain with dimension at most 1. Prove that R is
a UFD if and only if R is a PID.
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