IDEAL THEORY AND PRÜFER DOMAINS

FELIX GOTTI

DISCRETE VALUATION RINGS

Throughout this lecture, R is an integral domain. Recall that qf(R) denotes the quotient field of R.

Definition 1. If a valuation domain is Noetherian, then it is called a *discrete valuation* ring (DVR).

Example 2. For each $p \in \mathbb{P}$, we have seen before that $\mathbb{Z}_{(p)}$ is a valuation domain. Since \mathbb{Z} is Noetherian, $\mathbb{Z}_{(p)}$ is also Noetherian and, therefore, a DVR. Note, in addition, that $\mathbb{Z}_{(p)}$ is a local domain whose maximal ideal, $p\mathbb{Z}_{(p)}$, is principal.

In general, we can characterize DVRs as follows.

Theorem 3. For an integral domain R, the following statements are equivalent.

- (a) R is a DVR.
- (b) R is a local PID.
- (c) R is a local Noetherian domain whose maximal ideal is principal.
- (d) R is a local Noetherian integrally closed domain with dim $R \leq 1$.

Proof. (a) \Rightarrow (b): A valuation domain is always local. On the other hand, since every valuation domain is a Bezout domain, the fact that R is Noetherian implies that every ideal of R is principal.

(b) \Rightarrow (a): Every PID is Noetherian. In addition, every PID is a Bezout domain, and every local Bezout domain is a valuation domain.

(b) \Rightarrow (c): This is clear.

(c) \Rightarrow (b): Assume that R is a local Noetherian domain with maximal ideal M = Rx for some $x \in R$. To show that R is a PID, let I be a proper ideal of R. By Krull's Intersection Theorem, $\bigcap_{n \in \mathbb{N}} M^n = (0)$, and so there is an $n \in \mathbb{N}$ such that $I \subseteq M^n$ but $I \nsubseteq M^{n+1}$. Take $a \in I \setminus M^{n+1}$, and write $a = ux^n$ for some $u \in R$. Since $a \notin M^{n+1}$, we obtain that $u \notin M$. As R is local, $u \in R^{\times}$, and so $x^n = u^{-1}a \in I$. This implies that $I = M^n$ is a principal ideal. Hence R is a PID.

(b) \Rightarrow (d): It follows from the fact that a PID is a local Noetherian integrally closed domain with Krull dimension at most 1.

F. GOTTI

(d) \Rightarrow (c): Let M be the maximal ideal of R. If R is a field, then M = (0) is clearly principal. So we will assume that dim R = 1. As R is Noetherian, there is an ideal Rx that is maximal among all the principal ideals contained in M. Our aim is to show that M = Rx, and for this it suffices to argue that $M \subseteq Rx$. Suppose, by way of contradiction, that this is not the case. Since R is a 1-dimensional local domain, Rad Rx = M, and so the fact that M is finitely generated guarantees the existence of a minimum $m \in \mathbb{N}$ such that $M^m \subseteq Rx$. Take $y \in M^{m-1}$ so that $y \notin Rx$ (note that $m \geq 2$). Then $y/x \in qf(R)$ satisfies that $y/x \notin R$ but $(y/x)M \subseteq R$. Since (y/x)M is an ideal of R, either (y/x)M = R or $(y/x)M \subseteq M$.

CASE 1: (y/x)M = R. In this case, we can take $r \in M$ such that yr = x. Since $r \notin R^{\times}$, it follows that $Rx \subsetneq Ry$, which contradicts the maximality of Rx.

CASE 2: $(y/x)M \subseteq M$. Set s = y/x. Since R is Noetherian, we can take nonzero elements $a_1, \ldots, a_n \in R$ such that $M = Rv_1 + \cdots + Rv_n$. As $sM \subseteq M$, for every $j \in \llbracket 1, n \rrbracket$ we can write $sv_j = \sum_{i=1}^n c_{ij}v_i$ for some $c_{1j}, \ldots, c_{nj} \in R$. Equivalently, Av = 0, where A is the matrix $(\delta_{ij}s - c_{ij})_{1 \leq i,j \leq n}$ and v is the vector $(v_1, \ldots, v_n)^T$. By Cramer's Rule, $(\det A)v_1 = 0$. So $\det A = 0$, which implies that s = y/x is a root of the monic polynomial $\det(tI_n - C) \in R[t]$, where $C = (c_{ij})_{1 \leq i,j \leq n}$. Hence y/x is integral over R. Since R is integrally closed, $y/x \in R$, which is a contradiction. \Box

As part of the proof of Theorem 3, we obtained the following result.

Corollary 4. If R is a DVR with maximal ideal M, then the set of nonzero proper ideals of R is $\{M^n : n \in \mathbb{N}\}$.

Example 5. Fix $p \in \mathbb{P}$ and consider the DVR $\mathbb{Z}_{(p)}$. Suppose that I is a nonzero proper ideal of $\mathbb{Z}_{(p)}$. Since $\mathbb{Z}_{(p)}$ is principal, there exists $q \in \mathbb{Z}_{(p)}$ such that $I = q\mathbb{Z}_{(p)}$. Let n be the unique nonnegative integer such that $q = p^n \frac{a}{b}$ for some nonzero $a, b \in \mathbb{Z}$ such that $p \nmid a$ (as I is proper, $n \geq 1$). Then $I = p^n \mathbb{Z}_{(p)} = (p\mathbb{Z}_{(p)})^n$.

We can also characterize DVRs in terms of valuation maps; indeed, it is precisely the valuation group in this characterization what motivates the term "discrete valuation ring". A valuation map $v: F \to \mathbb{Z} \cup \{\infty\}$ that is surjective is called a *discrete valuation map*.

Theorem 6. For an integral domain R, the following statements are equivalent.

- (a) R is a DVR.
- (b) There is a discrete valuation map $v: qf(R) \to \mathbb{Z} \cup \{\infty\}$ satisfying that $R = v^{-1}(\mathbb{N}_0 \cup \{\infty\})$.

Proof. (a) \Rightarrow (b): Let R be a DVR, and let M be the maximal ideal of R. It follows from Theorem 3 that M = Rt for some $t \in R$. Suppose now that $q \in qf(R)^{\times}$ is contained in R. Because $\bigcap_{n \in \mathbb{N}} M^n = (0)$ by Krull's Intersection Theorem, there is a maximum $v(q) \in \mathbb{N}_0$ such that $t^{v(q)}$ divides q in R. Since R is a valuation domain, we

 $\mathbf{2}$

can define $v: qf(R)^{\times} \to \mathbb{Z}$ by $q \mapsto v(q)$ if $q \in R$ and $v \mapsto -v(q^{-1})$ otherwise. One can easily verify that v is a group homomorphism satisfying $v(q_1 + q_2) \ge \min\{v(q_1), v(q_2)\}$ for all $q_1, q_2 \in qf(R)^{\times}$ with $q_1 + q_2 \ne 0$. Therefore the extension $v: qf(R) \to \mathbb{Z} \cup \{\infty\}$, where $v(0) = \infty$, is a valuation map. It is clear that $R = \{q \in qf(R) : v(q) \ge 0\}$.

(b) \Rightarrow (a): Assume now that $v: qf(R) \to \mathbb{Z} \cup \{\infty\}$ is a discrete valuation map with $R = v^{-1}(\mathbb{N}_0 \cup \{\infty\})$. We know from previous lectures that R is a valuation domain with maximal ideal $M := v^{-1}(\mathbb{N} \cup \{\infty\})$ and group of units $R^{\times} = v^{-1}(0)$. As v is surjective, there is a $t \in R$ with v(t) = 1. Now if $r \in M$ and n = v(r), we see that $v(r/t^n) = 0$, and so $r = ut^n$ for some $u \in R^{\times}$. Hence M = Rt is a principal ideal. Thus, R is a DVR by Theorem 3.

With notation as in part (b) of Theorem 6, an element $t \in R$ such that v(t) = 1 is called a *uniformizer element* of the DVR R.

Example 7. Fix $p \in \mathbb{P}$. The quotient field of the DVR $\mathbb{Z}_{(p)}$ is \mathbb{Q} . For each nonzero rational q, there is a unique $n \in \mathbb{Z}$ satisfying that $q = p^n \frac{a}{b}$ for nonzero $a, b \in \mathbb{Z}$ such that $p \nmid ab$. One can easily verify that the map $v : \mathbb{Q} \to \mathbb{Z} \cup \{\infty\}$ given by v(q) = n is a discrete valuation map, and it is clear that $\mathbb{Z}_{(p)} = \{q \in \mathbb{Q} : v(q) \ge 0\}$. Note that the uniformizers of $\mathbb{Z}_{(p)}$ are the elements of the form $p \frac{a}{b}$ for nonzero $a, b \in \mathbb{Z}$ with $p \nmid ab$.

Proposition 8. Let R be a DVR. An element $t \in R$ is a uniformizer if and only if the maximal ideal of R is Rt.

Proof. We have already argued the direct implication in the proof of Theorem 6 (the part (b) \Rightarrow (a)). For the reverse implication, suppose that $v: qf(R) \rightarrow \mathbb{Z} \cup \{\infty\}$ is a discrete valuation map with $R = v^{-1}(\mathbb{N}_0 \cup \{\infty\})$ and that the maximal ideal of R is Rt. Since v is surjective there is a $q \in qf(R)$ such that v(q) = 1, and it is clear that $q \in M$. Writing q = rt, we see that v(t)v(r) = v(q) = 1, which implies that v(t) = 1. Hence t is a uniformizer element of R.

Corollary 9. In a DVR, every uniformizer is a prime element, and any two uniformizer elements are associates.

We have seen before that every DVR is a PID. We conclude this lecture showing that every DVR is indeed a Euclidean domain.

Proposition 10. Every DVR is a Euclidean domain.

Proof. Let R be a DVR, and let $v: R \to \mathbb{Z} \cup \{\infty\}$ be a discrete valuation map with $R = v^{-1}(\mathbb{N}_0 \cup \{\infty\})$. We verify that R is a Euclidean domain with respect to the norm $v: R \setminus \{0\} \to \mathbb{N}_0$. To do so, take $a, b \in R$ such that $b \neq 0$. If $ab^{-1} \in R$, then we can write a = qb + r, where $q = ab^{-1} \in R$ and r = 0. On the other hand, assume that $ab^{-1} \notin R$. In this case, we can write a = qb + r for q = 0 and r = a, and observe that $ab^{-1} \notin R$ guarantees that $v(ab^{-1}) < 0$, that is, v(r) = v(a) < v(b). Thus, R is a Euclidean domain.

F. GOTTI

EXERCISES

Exercise 1. Let F be a field.

- (1) Prove that the ring of formal power series F[x] is a DVR.
- (2) The quotient field of $F[\![x]\!]$ is the field of formal Laurent series $F(\!(x)\!)$. Find a discrete valuation map $v: F(\!(x)\!) \to \mathbb{Z} \cup \{\infty\}$ such that $v^{-1}(\mathbb{N}_0 \cup \{\infty\}) = F[\![x]\!]$.

Exercise 2. Fix $p \in \mathbb{P}$. A p-adic integer is a formal series $\sum_{n\geq 0} c_n p^n$, where c_n belongs to the discrete interval $[\![0, p-1]\!] := \{0, 1, \ldots, p-1\}$ for every $n \in \mathbb{N}_0$. We define the addition (resp., multiplication) of two p-adic integers as it is done with formal power series but using carries to keep the coefficients of the sum (resp., product) in the discrete interval $[\![0, p-1]\!]$. The set of p-adic integers is denoted by \mathbb{Z}_p .

- (1) Prove that \mathbb{Z}_p is an integral domain. The field of fractions of \mathbb{Z}_p , denoted by \mathbb{Q}_p , is called the field of p-adic numbers.
- (2) Prove that $\mathbb{Z}_p^{\times} = \left\{ \sum_{n \ge 0} c_n p^n \in \mathbb{Z}_p : c_0 \neq 0 \right\}$, and then deduce that \mathbb{Z}_p is a local ring.
- (3) Prove that every nonzero ideal of \mathbb{Z}_p has the form $p^n \mathbb{Z}_p$ for some $n \in \mathbb{N}$. Deduce that \mathbb{Z}_p is a DVR.
- (4) Prove that $\mathbb{Q}_p = \mathbb{Z}_p[1/p]$, and find a discrete valuation map $v : \mathbb{Q}_p \to \mathbb{Z} \cup \{\infty\}$ satisfying that $v^{-1}(\mathbb{N}_0 \cup \{\infty\}) = \mathbb{Z}_p$.

DEPARTMENT OF MATHEMATICS, MIT, CAMBRIDGE, MA 02139 Email address: fgotti@mit.edu