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Valuation Domains II

Throughout this lecture, R is an integral domain. Recall that qf(R) denotes the
quotient field of R.

Overrings and Underrings. An extension ring S of R is called an overring if S is
a subring of qf(R), in which case, qf(S) = qf(R). It is clear that every overring of a
valuation domain is a valuation domain. A subring U of R is called an underring of R
if qf(U) = qf(R), in which case, R is an overring of U . Given a valuation domain,
one can obtain all its valuation overrings (resp., underrings) by looking at localizations
(resp., quotients). We prove this in the next two propositions.

Proposition 1. Let R be a valuation domain. Then the overrings of R are in bijection
with the prime ideals of R and can be obtained by localization at prime ideals.

Proof. Let MR denote the maximal ideal of R. Let O be the set consisting of all
overrings of R, and let P be the set consisting of all prime ideals of R. Take S to be
an overring of R with maximal ideal MS. Since MS contains no units of S, for each
s ∈ MS, the element s−1 /∈ R and, therefore, the fact that R is a valuation domain
ensures that s ∈ R. Hence MS ⊆ R. As MS is a prime ideal in S, it must be a prime
ideal in R. Hence the assignment S 7→ MS induces a map φ : O → P. For every
prime ideal P ∈ P, the localization RP is an overring of R satisfying φ(RP ) = P .
Thus, φ is surjective. To check that φ is injective, take two overrings S1 and S2 of R
such that φ(S1) = M = φ(S2). If s ∈ S1 \ M = S×

1 , then either s or s−1 belongs to
S2 \M because S2 is a valuation domain. Then the equality S×

2 = S2 \M implies that
s ∈ S2 \ M . As a result, S1 ⊆ S2, and we can similarly check the reverse inclusion.
Hence φ is also injective, which concludes the proof. □

Proposition 2. Let R be a valuation domain with maximal ideal MR. Then the valu-
ation underrings of R are in bijection with the valuation subrings of R/MR.

Proof. Suppose that U is a valuation underring of R. Since R is an overring of U , it
follows thatMR is a prime ideal of U (see the proof of Proposition 1). As qf(U) = qf(R),
we can easily verify that R/MR is the quotient field of U/MR. Now take r ∈ R such
that r+MR does not belong to U/MR. Then r /∈ U , and the fact that U is a valuation
domain implies that r−1 ∈ U , whence r−1 +MR ∈ U/MR. Thus, U/MR is a valuation
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domain. As a result, the assignment U 7→ U/MR determines a map from the set of
underrings of R to the set of valuation subrings of R/MR. This map is injective by
the Third Isomorphism Theorem for rings. To show that it is surjective, suppose that
V/MR is a valuation subring of R/MR for some subring V of R. Take r ∈ qf(R)
such that r ∈ R. Then either r ∈ MR ⊆ V or r ∈ R×. In the second case, either
r + MR = v + MR or r−1 + MR = v + MR for some v ∈ V , and so either r ∈ V or
r−1 ∈ V . This argument, along with the fact that R is a valuation domain, shows that
V is a valuation underring of R, which concludes the proof. □

Integral closures. Our next goal will be to show that the integral closure of an
integral domain is the intersection of all its valuation overrings. Before proving this,
we establish some useful results about valuation domains.

Proposition 3. Let R be a subring of a field F . For every prime ideal P of R, there
is a valuation domain of F containing R whose maximal ideal lies over P .

Proof. After replacing R by its localization at the prime ideal P if necessary, one can
assume that R is a local ring with maximal ideal P . Let S be the poset consisting of
all subrings S of F containing R and satisfying that 1 /∈ PS. Clearly, S contains R.
In addition, the union of all the subrings in any chain of S is again a subring of F in
S . Hence S contains a maximal element S by virtue of Zorn’s Lemma. Let M be a
maximal ideal of S containing the proper ideal PS. Since R ⊆ SM and SM ∈ S , the
maximality of S ensures that S = SM . Thus, S is a local ring. Since M ∩R is a proper
ideal of R containing the maximal ideal P , it follows that M lies over P .

To show that S is a valuation domain of F , take x ∈ F such that x /∈ S. The
maximality of S ensures that 1 ∈ PS[x]. Take b0, . . . , bk ∈ PS such that 1 =

∑k
i=0 bix

i.
Since b0 belongs to the only maximal ideal of S, it follows that 1−b0 ∈ S×. As a result,
there is a minimum m ∈ N such that there exist c1, . . . , cm ∈ M with

(0.1) 1 = c1x+ · · ·+ cmx
m.

Now suppose, by way of contradiction, that x−1 /∈ S. Mimicking the previous argument,
we can guarantee the existence of a minimum n ∈ N such that

(0.2) 1 = c′1x
−1 + · · ·+ c′nx

−n

for some c′1, . . . , c
′
n ∈ M . Observe that if m ≥ n, then we can add the equation (0.2)

multiplied by cmx
m to the equation (0.1) to contradict the minimality of m. On the

other hand, if m < n, then we can add the equation (0.1) multiplied by c′nx
−n to the

equation (0.2) to contradict the minimality of n. Hence x−1 ∈ S. As a result, S is a
valuation domain of F . □

Valuation domains are integrally closed, as the following proposition shows.

Proposition 4. Every valuation domain is integrally closed.
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Proof. Let q ∈ qf(R)× be an integral element over R, and take a polynomial xn −∑n−1
i=0 cix

i in R[x] having q as a root. If q−1 ∈ R, then q−n =
∑n−1

i=0 ciq
−i, and so

1 = q−1
(∑n−1

i=0 ciq
n−i+1

)
. In this case, q−1 ∈ R× and, therefore, q ∈ R. On the other

hand, if q−1 /∈ R, then q ∈ R because R is a valuation domain. Thus, R is integrally
closed. □

We are in a position to prove the main result of this lecture.

Theorem 5. Let R be a subring of a field F . Then the integral closure of R in F
equals the intersection of all the valuation domains of F containing R.

Proof. Let R̄ denote the integral closure of R in F . Since every valuation domain
is integrally closed, it is clear that R̄ is contained in the intersection of all valuation
domains of F containing R. For the reverse implication, suppose that x ∈ F× is not
integral over R, and set y = x−1. We claim that yR[y] ̸= R[y]. If this were not the case,
then 1 =

∑n
i=1 ciy

i for some c1, . . . , cn ∈ R, whence xn−
∑n

i=1 cix
n−i = 0, contradicting

that x is not integral over R. Therefore the claim follows, that is, yR[y] is a proper
ideal of R[y]. Let M be a maximal ideal of R[y] containing yR[y]. Proposition 3 now
guarantees the existence of a valuation domain S of F with its maximal ideal MS

satisfying MS ∩ R = M . Since y ∈ MS, the valuation domain S does not contain x.
Hence the intersection of all the valuation domains of F containing R is contained
in R̄. □

Corollary 6. The integral closure of an integral domain is the intersection of all its
valuation overrings.

Homomorphism Extensions. For fields F and K and a subring R of F , we are
interested in whether we can extend a ring homomorphism φ : R → K to a larger
subring of F . If so, we would like to know how much φ can be extended. The following
lemma gives a plausible answer to our first concern. In addition, Theorem 8 can be
taken as an effective answer to our second concern.

Lemma 7. Let F be a field, R a subring of F , and φ : R → K a ring homomorphism,
where K is an algebraically closed field. If α ∈ F×, then φ can be extended to either a
ring homomorphism R[α] → K or a ring homomorphism R[α−1] → K.

Proof. Letting P denote the kernel of φ, we can extend φ to a ring homomorphism
RP → K via the assignment r/s 7→ φ(r)/φ(s) for every r ∈ R and s ∈ R\P . Note that
the kernel of the extended homomorphism is the maximal ideal PP , and so its image
is a subfield of K isomorphic to RP/PP . Therefore we can assume, without loss of
generality, that R is a local ring and φ(R) is a subfield ofK. LetM denote the maximal
ideal of R. We can extend φ : R → K to a ring homomorphism φx : R[x] → φ(R)[x] via
the natural assignments

∑n
i=0 rix

i 7→
∑n

i=0 φ(ri)x
i. Set Iα := {p(x) ∈ R[x] : p(α) = 0}
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and Iα−1 := {p(x) ∈ R[x] : p(α−1) = 0}. As φx is surjective, Jα := φ(Iα) and
Jα−1 := φ(Iα−1) are ideals of φ(R)[x]. We claim that at least one of these ideals must
be proper.

Suppose, by way of contradiction, that Jα = Jα−1 = φ(R)[x]. Take a polynomial

f(x) =
∑k

i=0 cix
i ∈ Iα with minimum degree such that φx(f(x)) = 1. Similarly, take

g(x) =
∑ℓ

i=0 dix
i ∈ Iα−1 with minimum degree such that φx(g(x)) = 1. Assume first

that k ≥ ℓ. Because φ(d0) = φx(g(0)) = 1, it follows that 1 − d0 ∈ kerφ ⊆ M
and, therefore, d0 /∈ M . As R is a local ring, d0 ∈ R×. Now we can subtract from∑k

i=0 ciα
i = 0 the equality

∑ℓ
i=0 diα

−i = 0 multiplied by d−1
0 ckα

k to contradict the
minimality of f(x). We can arrive to a contradiction in a similar way under the
assumption that ℓ ≥ k.

Thus, at least one of Jα and Jα−1 is a proper ideal of φ(R)[x]. Suppose, without loss
of generality, that Jα is proper. Since φ(R) is a field, φ(R)[x] is a PID and, therefore,
Jα is a principal ideal. Write Jα = (q(x)) for some q(x) ∈ φ(R)[x]. As Jα is proper,
we see that q(x) /∈ φ(R)×. Because K is algebraically closed, q(x) must have a root ρ
in K. Define φ̄ : R[α] → K via

∑n
i=0 riα

i 7→
∑n

i=0 φ(ri)ρ
i. To see that φ̄ is well defined,

take p(x) ∈ R[x] with p(α) = 0; that is, p(x) ∈ Iα. Then φx(p(x)) ∈ Jα, and so it is a
multiple of q(x), which implies that φx(p(x)) has ρ as a root. Hence φ̄ is the desired
extension of φ. □

Theorem 8. Let F be a field, R a subring of F , and φ : R → K a ring homomorphism,
where K is an algebraically closed field. Then the following statements hold.

(1) There is a maximal extension φ̄ : V → K of φ inside F .

(2) If φ̄ : V → K is a maximal extension of φ inside F , then V is a valuation of F .

Proof. (1) Consider the set P consisting of all pairs (S, σ), where S is a subring of
F containing R and σ : S → K is a ring homomorphism extending φ. Define ≤
on P as follows: (S1, σ1) ≤ (S2, σ2) whenever S1 ⊆ S2 and σ2 is an extension of σ1.
Clearly, P is a nonempty poset. Now suppose that T := {(Si, σi) : i ∈ I} is a
nonempty totally ordered subset of P. As T is totally ordered, S :=

⋃
i∈I Si is a

subring of F containing R. Define σ : S → K by σ(s) = σi(s) choosing i ∈ I so that
s ∈ Si. Since T is totally ordered, σ is a ring homomorphism and, therefore, (S, σ)
is an upper bound for T . Thus, Zorn’s lemma guarantees the existence of a maximal
extension φ̄ : V → K of φ.

(2) Let φ̄ : V → K be a maximal extension of φ inside F . To check that V is a
valuation of F , take α ∈ F×. It follows from Lemma 7 that φ̄ can be extended to
either a homomorphism V [α] → K or a homomorphism V [α−1] → K. The maximality
of (V, φ̄) now ensures that either α ∈ V or α−1 ∈ V . Hence V is a valuation of F . □
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Exercises

Exercise 1. Let R be a subring of a field F , and let P1 ⊊ P2 ⊊ · · · ⊊ Pn be a chain of
prime ideals of R. Show that there exists a valuation domain of F containing R and
having prime ideals Q1, . . . , Qn such that Qk lies over Pk for every k ∈ J1, nK.

Exercise 2. Derive Theorem 8 from Theorem 5.
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