IDEAL THEORY AND PRÜFER DOMAINS

FELIX GOTTI

Valuation Domains I

For an integral domain R, we let $\mathrm{qf}(R)$ denote the quotient field of R.
Characterizations. The primary purpose of this subsection is to introduce valuation domains and provide several useful characterizations.

Definition 1. An integral domain R is called a valuation domain if for every nonzero $x \in \mathrm{qf}(R)$, either x or x^{-1} belongs to R.

We observe that if R is a valuation domain, then for all nonzero $x, y \in R$ either $x y^{-1} \in R$ or $y x^{-1} \in R$, which means that $\left.y\right|_{R} x$ or $\left.x\right|_{R} y$.

It is clear from the definition that every field is a valuation domain. In addition, if R is a valuation domain and S is an extension ring of R with $R \subseteq S \subseteq q \mathrm{f}(R)$, then S is also a valuation domain. Let us take a look at another example.

Example 2. For $p \in \mathbb{P}$, and consider the localization $\mathbb{Z}_{(p)}$ of \mathbb{Z} at the prime ideal (p). The quotient field of $\mathbb{Z}_{(p)}$ is \mathbb{Q}. It is clear that for every nonzero rational number q, either $q \in \mathbb{Z}_{(p)}$ or $q^{-1} \in \mathbb{Z}_{(p)}$. As a result, $\mathbb{Z}_{(p)}$ is a valuation domain.

Example 3. What are the valuation domains of $\mathbb{C}(x)$? As in the previous example, we can readily see that $\mathbb{C}[x]_{(x-\alpha)}$ for any $\alpha \in \mathbb{C}$ are valuation domains of $\mathbb{C}(x)$. Indeed, these are the only valuation rings of $\mathbb{C}(x)$ containing $\mathbb{C}[x]$ (prove this!). However, there is a valuation domain of $\mathbb{C}(x)$ that does not contain $\mathbb{C}[x]$: the integral domain $R:=\mathbb{C}\left[x^{-1}\right]_{\left(x^{-1}\right)}$. To show that R is a valuation domain it suffices to observe that $x \mapsto x^{-1}$ induces an automorphism of $\mathbb{C}(x)$ sending $\mathbb{C}[x]_{(x)}$ to R.

We can characterize a valuation domain in terms of its poset of (principal) ideals.
Proposition 4. For an integral domain R, the following statements are equivalent.
(a) R is a valuation domain.
(b) The principal ideals of R are totally ordered by inclusion.
(c) The ideals of R are totally ordered by inclusion.
(d) The principal fractional ideals of R are totally ordered by inclusion.
(e) The fractional ideals of R are totally ordered by inclusion.

Proof. (a) $\Leftrightarrow(\mathrm{b})$: For all $x, y \in R$, it is clear that $\left.x\right|_{R} y$ if and only if $y R \subseteq x R$, whence the equivalence follows.
(b) $\Leftrightarrow(\mathrm{c})$: Clearly, (c) implies (b). For the direct implication, suppose that I_{1} and I_{2} are ideals of R such that $I_{1} \nsubseteq I_{2}$. Take $x \in I_{1} \backslash I_{2}$. Now take $y \in I_{2}$, and note that $y\}_{R} x$, which means that $x R \nsubseteq y R$. Since the principal ideals of R are totally ordered, $y \in y R \subseteq x R \subseteq I_{1}$. Thus, $I_{2} \subseteq I_{1}$.
(c) $\Rightarrow\left[(\mathrm{d})\right.$ and (e)]: It suffices to check that (c) implies (e). Let J_{1} and J_{2} be two fractional ideals of R. Take $r_{1}, r_{2} \in R$ such that $r_{1} J_{1}$ and $r_{2} J_{2}$ are ideals of R. Then $r_{1} r_{2} J_{1}$ and $r_{1} r_{2} J_{2}$ are also ideals of R, and so they must be comparable. Hence the fractional ideals J_{1} and J_{2} are also comparable.
$[(\mathrm{d})$ or $(\mathrm{e})] \Rightarrow(\mathrm{b})$: This is obvious.
Corollary 5. Every valuation domain is a local ring.
Proof. It follows from Proposition 4 that the ideals of R are totally ordered by inclusion. Therefore R must contain exactly one maximal ideal, namely, the union of all proper ideals.

An integral domain R is called a Bezout domain if every finitely generated ideal of R is principal. As the following proposition illustrates, valuation domains can also be characterized as local Bezout domains.

Proposition 6. An integral domain is a valuation domain if and only if it is a local Bezout domain.

Proof. For the direct implication, suppose that R is a valuation domain. Then R is local by Corollary 5. To show that R is a Bezout domain, let $I=\left(r_{1}, \ldots, r_{n}\right)$ be a finitely generated ideal of R. Since R is a valuation domain, the set $\left\{r_{j} R: j \in \llbracket 1, n \rrbracket\right\}$ is totally ordered under inclusion, whence it has a maximum element, namely, $r R$ for some $r \in\left\{r_{1}, \ldots, r_{n}\right\}$. It is clear that $I=r R$. Hence R is a local Bezout domain.

For the reverse implication, suppose that R is a local Bezout domain. Take $a, b \in R$, and consider the ideal $I:=R a+R b$. Let M be the maximal ideal of R. One can easily verify that the abelian group $I / M I$ is indeed an R / M-module, that is, a vector space over the field R / M. Since I is finitely generated, it is principal and, therefore, the vector space $I / M I$ has dimension one. So there exist $u, v \in R$ such that $u a+v b \in M I$, where either $u \in R^{\times}$or $v \in R^{\times}$. So we can take $r, s \in M$ such that $u a+v b=r a+s b$, that is, $(u-r) a=(s-v) b$. Since $u-r \in R^{\times}$or $s-v \in R^{\times}$, it follows that either $\left.b\right|_{R} a$ or $\left.a\right|_{R} b$. Hence R is a valuation domain.

Corollary 7. Every Noetherian valuation domain is a PID.

A pair (G, \leq), where G is an additive abelian group and \leq is an order relation on G, is called an ordered group provided that \leq is translation-invariant, that is, for all $a, b, c \in G$, the inequality $b \leq c$ implies that $a+b \leq a+c$. If \leq is a total order, then we say that (G, \leq) is a totally ordered group or a linearly ordered group. To easy notation we often write G instead of (G, \leq). For an ordered group G, the set $G_{+}:=\{a \in G: a \geq 0\}$ is a submonoid of G, which is called the nonnegative cone of G. If G is a totally ordered group, then it follows immediately that, for every $a \in G \backslash\{0\}$, exactly one of the inclusions $a \in G_{+}$and $-a \in G_{+}$holds.

For a field F and a totally ordered (abelian) group G, a map $v: F \rightarrow G \cup\{\infty\}$, where ∞ is a symbol not in G such that $x \leq \infty$ and $x+\infty=\infty$ for all $x \in G$, is called a valuation map if the following conditions hold:
(1) $v(0)=\infty$,
(2) $v: F^{\times} \rightarrow G$ is a group homomorphism, and
(3) $v(x+y) \geq \min \{v(x), v(y)\}$ for all $x, y \in F$.

Here is the characterization of a valuation domain that suggests the chosen terminology.

Theorem 8. For an integral domain R, the following statements are equivalent.
(a) R is a valuation domain.
(b) There exists a valuation map $v: \operatorname{qf}(R) \rightarrow G \cup\{\infty\}$ such that

$$
R=\{x \in \operatorname{qf}(R): v(x) \geq 0\}
$$

Also, if v and R are as in part (b), then the maximal of R is $\{x \in \operatorname{qf}(R): v(x)>0\}$.
Proof. (a) \Rightarrow (b): Assume that R is a valuation domain, and set $G:=\mathrm{qf}(R)^{\times} / R^{\times}$. We will write G additively, that is, $x R^{\times}+y R^{\times}=x y R^{\times}$for all $x, y \in \mathrm{qf}(R)^{\times}$. Now define the binary relation \leq on G as follows: $x R^{\times} \leq y R^{\times}$if $y x^{-1} \in R$. Using that $y x^{-1} \in R$ if and only if $R y \subseteq R x$ for all $x, y \in \operatorname{qf}(R)^{\times}$, one can readily check that \leqis an order relation on G compatible with the addition, and it follows from Proposition 4 that G is indeed a totally ordered group. Also, we see that $G_{+}=\left\{x R^{\times}: x \in R \backslash\{0\}\right\}$.

Now we can define $v: \operatorname{qf}(R) \rightarrow G \cup\{\infty\}$ by $v(0)=\infty$ and $v(x)=x R^{\times}$if $x \neq 0$. It is clear that $v: \mathrm{qf}(R)^{\times} \rightarrow G$ is a group homomorphism. Observe that the inequality $v(x+y) \geq \min \{v(x), v(y)\}$ follows immediately when at least one of the elements x, y, and $x+y$ equals zero. Now take $x, y \in \mathrm{qf}(R)^{\times}$with $x+y \neq 0$ and assume, without loss of generality, that $x R^{\times} \leq y R^{\times}$. Since $1+y / x \in R$, the element $(1+y / x) R^{\times}$belongs to G_{+}and, therefore,

$$
v(x+y)=x(1+y / x) R^{\times}=x R^{\times}+(1+y / x) R^{\times} \geq x R^{\times}=v(x)
$$

Hence $v(x+y) \geq \min \{v(x), v(y)\}$ for all $x, y \in \mathrm{qf}(R)$, which is the third defining condition of a valuation map. Thus, v is a valuation map. The last part of statement (b) can be readily deduced from the fact that $G_{+}=\left\{x R^{\times}: x \in R \backslash\{0\}\right\}$.
(b) \Rightarrow (a): Suppose that $v: \operatorname{qf}(R) \rightarrow G \cup\{\infty\}$ is a valuation map satisfying that $R=\{x \in \operatorname{qf}(R): v(x) \geq 0\}$. Take $x, y \in R$ to be nonzero elements. Then either $v\left(x y^{-1}\right) \in G_{+}$or $v\left(y x^{-1}\right) \in G_{+}$, which implies that either $x y^{-1} \in R$ or $y x^{-1} \in R$. Hence $\left.y\right|_{R} x$ or $\left.x\right|_{R} y$. As a consequence, R is a valuation domain.

For the final statement, one can easily check that $M:=\{x \in R: v(x)>0\}$ is an ideal of R. If a nonzero $u \in R$ has a positive valuation, then $v\left(u^{-1}\right)=-v(u)<0$, and so $u \notin R^{\times}$. In addition, if $v(u)=0$, then $v\left(u^{-1}\right)=0$, which means that $u \in R^{\times}$. Hence $R^{\times}=R \backslash M$, which means that M is a maximal ideal.

With notation as in the proof of Theorem 8, the group G is called the group of divisibility of the integral domain R.

Primes and Primary Ideals. We proceed to discuss prime and primary ideals in the special setting of valuation domains.

Proposition 9. In a valuation domain, every proper radical ideal is prime.
Proof. Let R be a valuation domain, and let I be a proper radical ideal of R. Then $I=\operatorname{Rad} I$ is the intersection of all minimal prime ideals over I. Since the ideals of R form a chain, there is only one minimal prime ideal P over I. Hence we find, a posteriori, that $I=P$, and so I is prime.

Proposition 10. Let R be a valuation domain, and let I be a proper ideal of R. Then $\bigcap_{n \in \mathbb{N}} I^{n}$ is a prime ideal of R that contains each prime ideal properly contained in I.
Proof. Set $J:=\bigcap_{n \in \mathbb{N}} I^{n}$. Take $x, y \in R$ such that $x \notin J$ and $y \notin J$, and then take $n \in \mathbb{N}$ such that $x, y \notin I^{n}$. Since R is a valuation domain, $I^{n} \subseteq(x)$ and $I^{n} \subseteq(y)$. The former inclusion ensures that $I^{n}(y) \subseteq(x y)$. On the other hand, $I^{n}(y) \neq(x y)$ because $x \notin I^{n}$. Then $I^{2 n} \subseteq I^{n}(y) \subsetneq(x y)$. This implies that $x y \notin I^{2 n}$, and so $x y \notin J$. Hence J is prime.

To argue the last statement, suppose that P is a prime ideal properly contained in I. Since P is prime, $I^{n} \nsubseteq P$ for any $n \in \mathbb{N}$. As R is a valuation domain, $P \subseteq I^{n}$ for every $n \in \mathbb{N}$, which means that $P \subseteq J$.

Before discussing the configuration of primary ideals inside a valuation domain, we need the following lemma.
Lemma 11. Let R be a valuation domain, and let I be a proper ideal of R. If J is an ideal of R such that $I \subsetneq \operatorname{Rad} J$, then J contains a power of I.

Proof. Exercise.
Recall that an ideal I of R is idempotent if $I^{2}=I$. We conclude this lecture with the following result about primary ideals of a valuation domain.
Theorem 12. Let R be a valuation domain, and let P be a prime ideal of R. Then the following statements hold.
(1) The product of P-primary ideals is a P-primary ideal.
(2) If P is not idempotent, then the P-primary ideals of R are the powers of P.
(3) The intersection of all P-primary ideals of R is a prime ideal that contains each prime ideal properly contained in P.

Proof. (1) Let Q_{1} and Q_{2} be P-primary ideals of R. Then $\operatorname{Rad}\left(Q_{1} Q_{2}\right)=\left(\operatorname{Rad} Q_{1}\right) \cap$ $\left(\operatorname{Rad} Q_{2}\right)=P$. To argue that $Q_{1} Q_{2}$ is a primary ideal, take $x, y \in R$ such that $x y \in Q_{1} Q_{2}$ but $x \notin \operatorname{Rad}\left(Q_{1} Q_{2}\right)=P$. We claim that $(x) Q_{1}=Q_{1}$. Since $x \notin Q_{1}$, the fact that R is a valuation domain implies that $Q_{1} \subsetneq(x)$. Set $J:=\left(Q_{1}:(x)\right)$. Observe that the inclusion $Q_{1} \subseteq(x)$ implies that $J \subseteq((x):(x))=R$, and so J is an ideal of R. Observe, in addition, that $J=x^{-1} Q_{1}$, that is, $Q_{1}=(x) J$. Now the fact that Q_{1} is primary with $x \notin P=\operatorname{Rad} Q_{1}$ ensures that $J \subseteq Q_{1}$. Therefore $Q_{1}=J$, and so $(x) Q_{1}=(x) J=Q_{1}$, as claimed. Then we see that $x y \in Q_{1} Q_{2}=(x) Q_{1} Q_{2}$, which implies that $y \in Q_{1} Q_{2}$. Hence $Q_{1} Q_{2}$ is primary.
(2) Suppose that P is not idempotent, that is, $P^{2} \subsetneq P$. By part (1), the powers of P are P-primary ideals. On the other hand, let Q be a P-primary ideal. Since P^{2} is contained in $\operatorname{Rad} Q$, Lemma 11 guarantees that Q contains a power of P^{2}, and so we can take $n \in \mathbb{N}$ such that $P^{n} \subseteq Q$ but $P^{n-1} \nsubseteq Q$. Take $x \in P^{n-1}$ such that $x \notin Q$. The inclusion $Q \subsetneq(x)$ holds because R is a valuation domain. Set $J:=(Q:(x))$, and observe that J is an ideal of R and $Q=(x) J$ (see previous paragraph). Since Q is P-primary and $x \notin Q$, the inclusion $J \subseteq P$ holds, whence $Q=(x) J \subseteq P^{n-1} P=P^{n}$. Thus, each P-primary ideal of R is a power of P.
(3) Assume that P is not the only P-primary ideal of R. Let I be the intersection of all P-primary ideals, and let Q be a P-primary ideal different from P. By part (1), the ideal Q^{n} is P-primary for every $n \in \mathbb{N}$ and, therefore, $I \subseteq \bigcap_{n \in \mathbb{N}} Q^{n}$. Observe that, by Lemma 11, every P-primary ideal contains a power of Q, and so $I=\bigcap_{n \in \mathbb{N}} Q^{n}$. It follows now by Proposition 10 that I is a prime ideal of R that contains each prime ideal properly contained in Q. Finally, suppose that P^{\prime} is a prime ideal of R such that $P^{\prime} \subsetneq P$. Then for each $n \in \mathbb{N}$, the fact that Q^{n} is P-primary guarantees that $Q^{n} \nsubseteq P^{\prime}$ and, as R is a valuation domain, $P^{\prime} \subseteq Q^{n}$. Thus, $P^{\prime} \subseteq \bigcap_{n \in \mathbb{N}} Q^{n}=I$.

ExERCISES

Exercise 1. Let R be a valuation domain, and let I be a proper ideal of R. If J is an ideal of R such that $I \subsetneq \operatorname{Rad} J$, then $I^{n} \subseteq J$ for some $n \in \mathbb{N}$.

Exercise 2. Let R be a valuation domain, and let P be a nonzero prime ideal of R. Show that if R contains a finitely generated P-primary ideal, then P is the maximal ideal of R.

Department of Mathematics, MIT, Cambridge, MA 02139
Email address: fgotti@mit.edu

