IDEAL THEORY AND PRÜFER DOMAINS

FELIX GOTTI

LOCALIZATION

Localization of Rings. Let R be a commutative ring with identity. A multiplicative subset of R is a submonoid of $(R \backslash\{0\}, \cdot)$. Let S be a multiplicative subset of R. One can define the following relation on $R \times S:\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right)$ for $\left(r_{1}, s_{1}\right),\left(r_{2}, s_{2}\right) \in R \times S$ provided that $\left(r_{1} s_{2}-r_{2} s_{1}\right) s=0$ for some $s \in S$. It is not hard to check that \sim is indeed an equivalence relation on $R \times S$. We let $S^{-1} R$ denote the set of equivalence classes of \sim and, for $r \in R$ and $s \in S$, we let r / s denote the equivalence class of (r, s). Motivated by the standard addition and multiplication of rational numbers, we can now define for r_{1} / s_{1} and r_{2} / s_{2} in $S^{-1} R$ the following operations:

$$
\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}:=\frac{r_{1} s_{2}+r_{2} s_{1}}{s_{1} s_{2}} \quad \text { and } \quad \frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}}:=\frac{r_{1} r_{2}}{s_{1} s_{2}} .
$$

It is routine to verify that both operations are well defined and that $\left(S^{-1} R,+, \cdot\right)$ is a commutative ring with identity $1 / 1$.

Proposition 1. $\left(S^{-1} R,+, \cdot\right)$ is a commutative ring with identity.
The ring $S^{-1} R$ is called the localization of R at S. We can easily see that the map $\pi: R \rightarrow S^{-1} R$ defined by $\pi(r)=r / 1$ satisfies the properties in the following proposition.

Proposition 2. Let R be a commutative ring with identity, and let S be a multiplicative subset of R. Then the following statements hold.
(1) The map $\pi: R \rightarrow S^{-1} R$ is a ring homomorphism satisfying that $\pi(s)$ is a unit in $S^{-1} R$ for every $s \in S$. In addition, π is injective if and only if S contains no zero-divisors of R.
(2) If $\varphi: R \rightarrow T$ is a ring homomorphism such that $\varphi(s)$ is a unit in T for every $s \in S$, then there exists a unique ring homomorphism $\theta: S^{-1} R \rightarrow T$ such that $\varphi=\theta \circ \pi$.

Proof. (1) One can readily see that π is a ring homomorphism. For every $s \in S$, it is clear that $1 / s \in S^{-1} R$ and, therefore, $\pi(s)=s / 1$ is a unit in $S^{-1} R$. If $s \in S$ is a zero-divisor in R, then taking $r \in R \backslash\{0\}$ with $s r=0$, we can see that $\pi(r)=0$ and so π is not injective. Conversely, if $\pi(r)=0$ for some $r \in R \backslash\{0\}$, then $r / 1=0 / 1$ and so there is an $s \in S$ such that $s r=0$.
(2) For φ as in (2), define $\theta: S^{-1} R \rightarrow T$ by $\theta(r / s)=\varphi(r) \varphi(s)^{-1}$. Since $\varphi(s) \in T^{\times}$ for every $s \in S$, the element $\varphi(r) \varphi(s)^{-1}$ belongs to T, and it is easy to check that θ is a well-defined ring homomorphism. Since $\theta(\pi(r))=\theta(r / 1)=\varphi(r)$, the equality $\theta \circ \pi=\varphi$ holds. Finally, for any ring homomorphism $\theta^{\prime}: S^{-1} R \rightarrow T$ with $\varphi=\theta^{\prime} \circ \pi$, we see that $\theta^{\prime}(r / s)=\theta^{\prime}(r / 1) \theta^{\prime}(1 / s)=\theta^{\prime}(\pi(r)) \theta^{\prime}(\pi(s))^{-1}=\varphi(r) \varphi(s)^{-1}=\theta(r / s)$ for all $r / s \in S^{-1} R$. Hence $\theta^{\prime}=\theta$, and the uniqueness follows.

If R is an integral domain, then we can take S to be ($R \backslash\{0\}, \cdot)$, then the localization of R at S is clearly a field. In this case, $S^{-1} R$ is called the quotient field or the field of fractions of R and is denoted by $\mathrm{qf}(R)$. Note that \mathbb{Q} is the quotient field of \mathbb{Z}. The following two examples of localizations show often in commutative ring theory.

Example 3. Let R be a commutative ring with identity, and let P be a prime ideal of R. Since R is prime, $S:=R \backslash P$ is a multiplicative subset of R. The ring $S^{-1} R$ is called the localization of R at P and is denoted by R_{P}.
(1) For instance, if $p \in \mathbb{P}$, then

$$
\mathbb{Z}_{(p)}=\{m / n: m, n \in \mathbb{Z} \text { and } p \nmid n\} ;
$$

observe that the units of $\mathbb{Z}_{(p)}$ are the elements m / n such that $m, n \in \mathbb{Z}$ and $p \nmid m n$.
(2) Set $R=\mathbb{C}[x, y]$ and $P=(x, y)$. Then P is a prime ideal, and the localization R_{P} of R at P consists of all rational expressions f / g, where $f, g \in R$ and $g \notin P$, that is, $g(0,0) \neq 0$. The units of R_{P} are the rational expressions f / g satisfying $f(0,0) g(0,0) \neq 0$.
In general, the units of R_{P} have the form r / s with $r, s \in R$ such that $r s \notin P$.
Example 4. Let R be a commutative ring with identity, and let f be an element of R such that $f^{n} \neq 0$ for any $n \in \mathbb{N}_{0}$. For $S:=\left\{f^{n}: n \in \mathbb{N}_{0}\right\}$, the ring $S^{-1} R=R[1 / f]$ is often denoted by R_{f}. It is not hard to argue that R_{f} is isomorphic to the ring $R[x] /(x f-1)$. For instance, $\mathbb{Z}[x]_{x}=\mathbb{Z}[x, 1 / x]$, which is the ring of Laurent polynomials in one variable over \mathbb{Z}.

An integral domain is the intersection of all its localizations at prime ideals.
Proposition 5. If R is an integral domain, then $R=\bigcap_{P} R_{P}=\bigcap_{M} R_{M}$, where the first intersection runs over all prime ideals of R and the second intersection runs over all maximal ideals of R.

Proof. It is clear that $R \subseteq \bigcap_{P} R_{P} \subseteq \bigcap_{M} R_{M}$. To show that $\bigcap_{M} R_{M} \subseteq R$, take $a \in \bigcap_{M} R_{M}$ and suppose, by way of contradiction, that $a \notin R$. The set $I_{a}:=\{r \in R$: $r a \in R\}$ is an ideal of R, which is a proper ideal because $a \notin R$. Let M be a maximal ideal of R containing I_{a}. Then $a \in R_{M}$, and we can take $r \in R$ and $s \in R \backslash M$ such that $a=r / s$. As $s a=r \in R$, we see that $s \in I_{a} \subseteq M$, which is a contradiction.

Localization and Ideals. For an ideal I of R, the ideal $S^{-1} R \pi(I)$ of $S^{-1} R$ is called the extension of I by π and is denoted by $S^{-1} I$. Observe that every element of $S^{-1} I$ can be written as a / s for some $a \in I$ and $s \in S$.

Proposition 6. Let R be a commutative ring with identity, and let S be a multiplicative subset of R. Then the following statements hold.
(1) For any ideal J of $S^{-1} R$ the equality $S^{-1} \pi^{-1}(J)=J$ holds. In particular, every ideal of $S^{-1} R$ is the extension of an ideal in R.
(2) For an ideal I of R, the equality $S^{-1} I=S^{-1} R$ holds if and only if $I \cap S \neq \emptyset$.
(3) The assignment $I \mapsto S^{-1} I$ induces a bijection between the set of prime ideals of R disjoint from S and the set of prime ideals of $S^{-1} R$.

Proof. (1) It suffices to show that J is contained in the ideal $J^{\prime}:=S^{-1} \pi^{-1}(J)$. Take $r / s \in J$. As $r / 1=(s / 1)(r / s) \in J$, it follows that $r \in \pi^{-1}(J)$, and so $r / 1 \in S^{-1} \pi^{-1}(J)$. Since J^{\prime} is an ideal of $S^{-1} R$, we see that $r / s=(1 / s)(r / 1) \in J^{\prime}$. Hence $J^{\prime}=J$. The second statement is an immediate consequence of the first one.
(2) If $S^{-1} I=S^{-1} R$, then $a / s=1 / 1$ for some $a \in I$ and $s \in S$. So we can take $s^{\prime} \in S$ such that $(a-s) s^{\prime}=0$. This means that $s s^{\prime}=a s^{\prime} \in I$, whence $I \cap S=\emptyset$. Conversely, assume that $I \cap S \neq \emptyset$ and take $a \in I \cap S$. Then for all $r / s \in S^{-1} R$, we see that $r a \in I$ while $s a \in S$, which implies that $r / s=(r a) /(s a) \in S^{-1} I$. Thus, $S^{-1} I=S^{-1} R$.
(3) Let \mathscr{I} be the set of prime ideals in R that are disjoint from S, and let \mathscr{J} be the set of prime ideals in $S^{-1} R$. Let $e: \mathscr{I} \rightarrow \mathscr{J}$ and $c: \mathscr{J} \rightarrow \mathscr{I}$ be the maps given by the assignments $I \mapsto S^{-1} I$ and $J \mapsto \pi^{-1}(J)$, respectively. Since homomorphic inverse images of prime ideals are prime ideals, c is well defined. To check that e is also well defined, take $P \in \mathscr{I}$ and let us verify that $S^{-1} P$ is a prime ideal. Take $r_{1}, r_{2} \in R$ and $s_{1}, s_{2} \in S$ such that $\left(r_{1} / s_{1}\right)\left(r_{2} / s_{2}\right) \in S^{-1} P$. Then there are elements $a \in P$ and $s, s^{\prime} \in S$ such that $\left(r_{1} r_{2} s-a s_{1} s_{2}\right) s^{\prime}=0$, which implies that $r_{1} r_{2} s s^{\prime} \in P$. As P is prime and disjoint from S, we obtain that either $r_{1} \in P$ or $r_{2} \in P$, from which we deduce that either $r_{1} / s_{1} \in S^{-1} P$ or $r_{2} / s_{2} \in S^{-1} P$. Hence $S^{-1} P$ is a prime ideal, and so the map e is well defined. Part (1) guarantees that $e \circ c$ is the identity of \mathscr{J}. Proving that $c \circ e$ is the identity of \mathscr{I} amounts to arguing that $c(e(P)) \subseteq P$ for every $P \in \mathscr{I}$. To do so, take $a_{3} / s_{3} \in e(P)=S^{-1} P$ for $a_{3} \in P$ and $s_{3} \in S$. If $r \in \pi^{-1}\left(a_{3} / s_{3}\right)$, then $r / 1=a_{3} / s_{3}$ and there is an $s^{\prime \prime} \in S$ with $\left(r s_{3}-a_{3}\right) s^{\prime \prime}=0$. This implies that $r s_{3} \in P$, from which we deduce that $r \in P$. Hence $c(e(P)) \subseteq P$, as desired. Thus, $c \circ e$ is the identity of \mathscr{I}, which completes the proof.

The property of being Noetherian is preserved under localization.
Proposition 7. Let R be a Noetherian domain, and let S be a multiplicative subset of R. Then $S^{-1} R$ is also Noetherian.

Proof. By Proposition 6, any ideal of $S^{-1} R$ has the form $S^{-1} I$ for some ideal I of R. Since R is Noetherian, $I=R a_{1}+\cdots+R a_{n}$ for some $a_{1}, \ldots, a_{n} \in R$. Then for each $a / s \in S^{-1} I$ with $a \in I$ and $s \in S$, we can write $a=\sum_{i=1}^{n} r_{i} a_{i}$ for some $r_{1}, \ldots, r_{n} \in R$ to obtain the equality $a / s=\sum_{i=1}^{n}\left(r_{i} / s\right)\left(a_{i} / 1\right)$. Thus, $S^{-1} I$ is the ideal of $S^{-1} R$ generated by $a_{1} / 1, \ldots, a_{n} / 1$. Hence $S^{-1} R$ is a Noetherian ring.

In addition, localization preserves the most important ideal operations, as we will see in the following proposition.

Proposition 8. Let R be a commutative ring with identity, and let S be a multiplicative subset of R. For ideals I and J of R, the following statements hold.
(1) $S^{-1}(I+J)=S^{-1} I+S^{-1} J$.
(2) $S^{-1}(I \cap J)=S^{-1} I \cap S^{-1} J$.
(3) $S^{-1}(I J)=\left(S^{-1} I\right)\left(S^{-1} J\right)$.
(4) $S^{-1} R / S^{-1} I \cong S^{-1}(R / I)$.

Proof. Exercise.

Localization of Modules. We can localize modules in the same way we have localized rings. Let R be a commutative ring with identity with a multiplicative subset S, and let M be an R-module. It is easy to verify that the relation on $M \times S$ defined by $\left(m_{1}, s_{1}\right) \sim\left(m_{2}, s_{2}\right)$ if there is an $s \in S$ such that $\left(m_{1} s_{2}-m_{2} s_{1}\right) s=0$ is an equivalence relation, and one denotes the class of (m, s) by m / s and the set of all equivalence classes by $S^{-1} M$. It is routine to verify that the operations

$$
\frac{m_{1}}{s_{1}}+\frac{m_{2}}{s_{2}}:=\frac{s_{2} m_{1}+s_{1} m_{2}}{s_{1} s_{2}} \quad \text { and } \quad \frac{r}{s} \cdot \frac{m_{1}}{s_{1}}:=\frac{r m_{1}}{s s_{1}}
$$

where $m_{1} / s_{1}, m_{2} / s_{2} \in S^{-1} M$ and $r / s \in S^{-1} R$, are well defined and turn $S^{-1} M$ into an $S^{-1} R$-module, which is called the localization M at S. In particular, $S^{-1} M$ is an R-module. As Exercise 7 indicates, localization commutes with (direct) sums, intersections, and quotients of modules. The map $\pi: M \rightarrow S^{-1} M$ defined by $m \mapsto m / 1$ is an R-module homomorphism and has the universal property described in Proposition 9(2).

Proposition 9. Let R be a commutative ring with identity, let S be a multiplicative subset of R, and let M be an R-module. Then the following statements hold.
(1) The map $\pi: M \rightarrow S^{-1} M$ defined by $m \mapsto m / 1$ is an R-module homomorphism and $\operatorname{ker} \pi=\{m \in M: s m=0$ for some $s \in S\}$.
(2) If M^{\prime} is an R-module such that, for each $s \in S$, left multiplication by s yields a bijection on M^{\prime} and, in addition, $\varphi: M \rightarrow M^{\prime}$ is an R-module homomorphism, then there is a unique R-module homomorphism $\theta: S^{-1} M \rightarrow M^{\prime}$ such that $\varphi=\theta \circ \pi$.
(3) Any R-module homomorphism $\psi: M \rightarrow M^{\prime}$ induces an $S^{-1} R$-module homomorphism $S^{-1} M \rightarrow S^{-1} M^{\prime}$ via the assignment $m / s \mapsto \psi(m) / s$.
Proof. Exercise.
The localization of a Noetherian R-module is Noetherian.
Proposition 10. Let R be a commutative ring with identity, and let S be a multiplicative subset of R. If M is a Noetherian R-module, then $S^{-1} M$ is also a Noetherian $S^{-1} R$-module.

Proof. See the proof of Proposition 7.

Exercises

Exercise 1. Let R be a commutative ring with identity, and let S be a multiplicative subset of R. The set $\bar{S}:=\left\{r \in R: \pi(r)\right.$ is a unit of $\left.S^{-1} R\right\}$ is called the saturation of S. Prove the following statements.
(1) $\bar{S}=\{r \in R: r t \in S$ for some $t \in R\}$.
(2) \bar{S} is a multiplicative subset of R satisfying $S \subseteq \bar{S}=\overline{\bar{S}}$.
(3) $S^{-1} R \cong \bar{S}^{-1} R$.

Exercise 2. Let R be a commutative ring with identity, and let I and J be ideals of R. Prove that $I=J$ if and only if $I R_{P}=J R_{P}$ for every maximal ideal P of R.

Exercise 3. Let R be an integral domain, and let S be a multiplicative subset of R. Prove the following statements.
(1) If R is a UFD, then $S^{-1} R$ is a UFD.
(2) Suppose that S is saturated and R is atomic (i.e, every nonzero nonunit of R factors into irreducibles). If $S^{-1} R$ is a UFD, then R is a UFD.
Exercise 4. Prove Proposition 8.
Exercise 5. Prove Proposition 9.
Exercise 6. Let R be a commutative ring, and let S be a multiplicative subset of R. Let M be an R-module. Let $\pi: M \rightarrow S^{-1} M$ be the natural map. Prove the following statements.
(1) For each R-submodule N of M, the set $S^{-1} N:=\{n / s: n \in N$ and $s \in S\}$ is an $S^{-1} R$-submodule of $S^{-1} M$.
(2) If L is an $S^{-1} R$-submodule of $S^{-1} M$, then $\pi^{-1}(L)$ is an R-submodule of M.
(3) If N is an R-submodule of M, then $N \subseteq \pi^{-1}\left(S^{-1} N\right)$. Also, if $N=\pi^{-1}(L)$ for an $S^{-1} R$-submodule L of $S^{-1} M$, then $L=S^{-1} N$. In particular, every $S^{-1} R$-submodule of $S^{-1} M$ has the form $S^{-1} N$ for an R-submodule N of M.
(4) Deduce that there is a bijection between the set of $S^{-1} R$-submodules of $S^{-1} M$ and the set of R-submodules N of M satisfying the condition: if $s m \in N$ for some $s \in S$ and $m \in M$, then $m \in N$.

Exercise 7. Let R be a commutative ring with identity, let S be a multiplicative subset of R, and let M be an R-module. For any submodules M_{1} and M_{2} of M, prove the following statements.
(1) $S^{-1}\left(M_{1}+M_{2}\right)=S^{-1} M_{1}+S^{-1} M_{2}$.
(2) $S^{-1}\left(M_{1} \oplus M_{2}\right)=S^{-1} M_{1} \oplus S^{-1} M_{2}$.
(3) $S^{-1}\left(M_{1} \cap M_{2}\right) \cong S^{-1} M_{1} \cap S^{-1} M_{2}$.
(4) $S^{-1} M / S^{-1} M_{1}=S^{-1}\left(M / M_{1}\right)$.

Department of Mathematics, MIT, Cambridge, MA 02139
Email address: fgotti@mit.edu

