Localization

Localization of Rings. Let R be a commutative ring with identity. A multiplicative subset of R is a submonoid of $(R \setminus \{0\}, \cdot)$. Let S be a multiplicative subset of R. One can define the following relation on $R \times S$: $(r_1, s_1) \sim (r_2, s_2)$ for $(r_1, s_1), (r_2, s_2) \in R \times S$ provided that $(r_1s_2 - r_2s_1)s = 0$ for some $s \in S$. It is not hard to check that \sim is indeed an equivalence relation on $R \times S$. We let $S^{-1}R$ denote the set of equivalence classes of \sim and, for $r \in R$ and $s \in S$, we let r/s denote the equivalence class of (r, s).

Motivated by the standard addition and multiplication of rational numbers, we can now define for r_1/s_1 and r_2/s_2 in $S^{-1}R$ the following operations:

$$
\frac{r_1}{s_1} + \frac{r_2}{s_2} := \frac{r_1s_2 + r_2s_1}{s_1s_2} \quad \text{and} \quad \frac{r_1}{s_1} \cdot \frac{r_2}{s_2} := \frac{r_1r_2}{s_1s_2}.
$$

It is routine to verify that both operations are well defined and that $(S^{-1}R, +, \cdot)$ is a commutative ring with identity $1/1$.

Proposition 1. $(S^{-1}R, +, \cdot)$ is a commutative ring with identity.

The ring $S^{-1}R$ is called the localization of R at S. We can easily see that the map $\pi: R \to S^{-1}R$ defined by $\pi(r) = r/1$ satisfies the properties in the following proposition.

Proposition 2. Let R be a commutative ring with identity, and let S be a multiplicative subset of R. Then the following statements hold.

1. The map $\pi: R \to S^{-1}R$ is a ring homomorphism satisfying that $\pi(s)$ is a unit in $S^{-1}R$ for every $s \in S$. In addition, π is injective if and only if S contains no zero-divisors of R.

2. If $\varphi: R \to T$ is a ring homomorphism such that $\varphi(s)$ is a unit in T for every $s \in S$, then there exists a unique ring homomorphism $\theta: S^{-1}R \to T$ such that $\varphi = \theta \circ \pi$.

Proof. (1) One can readily see that π is a ring homomorphism. For every $s \in S$, it is clear that $1/s \in S^{-1}R$ and, therefore, $\pi(s) = s/1$ is a unit in $S^{-1}R$. If $s \in S$ is a zero-divisor in R, then taking $r \in R \setminus \{0\}$ with $sr = 0$, we can see that $\pi(r) = 0$ and so π is not injective. Conversely, if $\pi(r) = 0$ for some $r \in R \setminus \{0\}$, then $r/1 = 0/1$ and so there is an $s \in S$ such that $sr = 0$.

(2) For \(\varphi \) as in (2), define \(\theta : S^{-1}R \rightarrow T \) by \(\theta(r/s) = \varphi(r)\varphi(s)^{-1} \). Since \(\varphi(s) \in T^\times \) for every \(s \in S \), the element \(\varphi(r)\varphi(s)^{-1} \) belongs to \(T \), and it is easy to check that \(\theta \) is a well-defined ring homomorphism. Since \(\theta(\pi(r)) = \theta(r/1) = \varphi(r) \), the equality \(\theta \circ \pi = \varphi \) holds. Finally, for any ring homomorphism \(\theta' : S^{-1}R \rightarrow T \) with \(\varphi = \theta' \circ \pi \), we see that \(\theta'(r/s) = \theta'(r/1)\theta'(1/s) = \theta'(\pi(r))\theta'(\pi(s))^{-1} = \varphi(r)\varphi(s)^{-1} = \theta(r/s) \) for all \(r/s \in S^{-1}R \). Hence \(\theta' = \theta \), and the uniqueness follows. \(\square \)

If \(R \) is an integral domain, then we can take \(S \) to be \((R \setminus \{0\}, \cdot) \), then the localization of \(R \) at \(S \) is clearly a field. In this case, \(S^{-1}R \) is called the \textit{quotient field} of \(R \) and is denoted by \(qf(R) \). Note that \(\mathbb{Q} \) is the quotient field of \(\mathbb{Z} \). The following two examples of localizations show often in commutative ring theory.

Example 3. Let \(R \) be a commutative ring with identity, and let \(P \) be a prime ideal of \(R \). Since \(R \) is prime, \(S := R \setminus P \) is a multiplicative subset of \(R \). The ring \(S^{-1}R \) is called the \textit{localization of \(R \) at \(P \)} and is denoted by \(R_P \).

1. For instance, if \(p \in \mathbb{P} \), then \(\mathbb{Z}_{(p)} = \{ m/n : m, n \in \mathbb{Z} \text{ and } p \nmid n \} \);
 observe that the units of \(\mathbb{Z}_{(p)} \) are the elements \(m/n \) such that \(m, n \in \mathbb{Z} \) and \(p \nmid mn \).

2. Set \(R = \mathbb{C}[x, y] \) and \(P = (x, y) \). Then \(P \) is a prime ideal, and the localization \(R_P \) of \(R \) at \(P \) consists of all rational expressions \(f/g \), where \(f, g \in R \) and \(g \notin P \), that is, \(g(0, 0) \neq 0 \). The units of \(R_P \) are the rational expressions \(f/g \) satisfying \(f(0, 0)g(0, 0) \neq 0 \).

In general, the units of \(R_P \) have the form \(r/s \) with \(r, s \in R \) such that \(rs \notin P \).

Example 4. Let \(R \) be a commutative ring with identity, and let \(f \) be an element of \(R \) such that \(f^n \neq 0 \) for any \(n \in \mathbb{N}_0 \). For \(S := \{ f^n : n \in \mathbb{N}_0 \} \), the ring \(S^{-1}R = R[1/f] \) is often denoted by \(R_f \). It is not hard to argue that \(R_f \) is isomorphic to the ring \(R[x]/(xf - 1) \). For instance, \(\mathbb{Z}[x]_x = \mathbb{Z}[x, 1/x] \), which is the ring of Laurent polynomials in one variable over \(\mathbb{Z} \).

An integral domain is the intersection of all its localizations at prime ideals.

Proposition 5. If \(R \) is an integral domain, then \(R = \bigcap_P R_P = \bigcap_M R_M \), where the first intersection runs over all prime ideals of \(R \) and the second intersection runs over all maximal ideals of \(R \).

Proof. It is clear that \(R \subseteq \bigcap_P R_P \subseteq \bigcap_M R_M \). To show that \(\bigcap_M R_M \subseteq R \), take \(a \in \bigcap_M R_M \) and suppose, by way of contradiction, that \(a \notin R \). The set \(I_a := \{ r \in R : ra \in R \} \) is an ideal of \(R \), which is a proper ideal because \(a \notin R \). Let \(M \) be a maximal ideal of \(R \) containing \(I_a \). Then \(a \in R_M \), and we can take \(r \in R \) and \(s \in R \setminus M \) such that \(a = r/s \). As \(sa = r \in R \), we see that \(s \in I_a \subseteq M \), which is a contradiction. \(\square \)
Localization and Ideals. For an ideal I of R, the ideal $S^{-1}R \pi(I)$ of $S^{-1}R$ is called the extension of I by π and is denoted by $S^{-1}I$. Observe that every element of $S^{-1}I$ can be written as a/s for some $a \in I$ and $s \in S$.

Proposition 6. Let R be a commutative ring with identity, and let S be a multiplicative subset of R. Then the following statements hold.

1. For any ideal J of $S^{-1}R$ the equality $S^{-1}\pi(J) = J$ holds. In particular, every ideal of $S^{-1}R$ is the extension of an ideal in R.
2. For an ideal I of R, the equality $S^{-1}I = S^{-1}R$ holds if and only if $I \cap S \neq \emptyset$.
3. The assignment $I \mapsto S^{-1}I$ induces a bijection between the set of prime ideals of R disjoint from S and the set of prime ideals of $S^{-1}R$.

Proof. (1) It suffices to show that J is contained in the ideal $J' := S^{-1}\pi^{-1}(J)$. Take $r/s \in J$. As $r/1 = (s/1)(r/s) \in J$, it follows that $r \in \pi^{-1}(J)$, and so $r/1 \in S^{-1}\pi^{-1}(J)$. Since J' is an ideal of $S^{-1}R$, we see that $r/s = (1/s)(r/1) \in J'$. Hence $J' = J$. The second statement is an immediate consequence of the first one.

(2) If $S^{-1}I = S^{-1}R$, then $a/s = 1/1$ for some $a \in I$ and $s \in S$. So we can take $s' \in S$ such that $(a - s)s' = 0$. This means that $ss' = as' \in I$, whence $I \cap S = \emptyset$. Conversely, assume that $I \cap S \neq \emptyset$ and take $a \in I \cap S$. Then for all $r/s \in S^{-1}R$, we see that $r/a \in I$ while $sa \in S$, which implies that $r/s = (ra)/(sa) \in S^{-1}I$. Thus, $S^{-1}I = S^{-1}R$.

(3) Let \mathcal{I} be the set of prime ideals in R that are disjoint from S, and let \mathcal{J} be the set of prime ideals in $S^{-1}R$. Let $e: \mathcal{I} \to \mathcal{J}$ and $c: \mathcal{J} \to \mathcal{I}$ be the maps given by the assignments $I \mapsto S^{-1}I$ and $J \mapsto \pi^{-1}(J)$, respectively. Since homomorphic inverse images of prime ideals are prime ideals, c is well defined. To check that e is also well defined, take $P \in \mathcal{I}$ and let us verify that $S^{-1}P$ is a prime ideal. Take $r_1, r_2 \in R$ and $s_1, s_2 \in S$ such that $(r_1/s_1)(r_2/s_2) \in S^{-1}P$. Then there are elements $a \in P$ and $s' \in S$ such that $(r_1 r_2 s - a s_1 s_2) s' = 0$, which implies that $r_1 r_2 s s' \in P$. As P is prime and disjoint from S, we obtain that either $r_1 \in P$ or $r_2 \in P$, from which we deduce that either $r_1/s_1 \in S^{-1}P$ or $r_2/s_2 \in S^{-1}P$. Hence $S^{-1}P$ is a prime ideal, and so the map e is well defined. Part (1) guarantees that $e \circ e$ is the identity of \mathcal{J}. Proving that $c \circ e$ is the identity of \mathcal{I} amounts to arguing that $c(e(P)) \subseteq P$ for every $P \in \mathcal{I}$. To do so, take $a_3/s_3 \in e(P) = S^{-1}P$ for $a_3 \in P$ and $s_3 \in S$. If $r \in \pi^{-1}(a_3/s_3)$, then $r/1 = a_3/s_3$ and there is an $s'' \in S$ with $(rs_3 - a_3)s'' = 0$. This implies that $rs_3 \in P$, from which we deduce that $r \in P$. Hence $c(e(P)) \subseteq P$, as desired. Thus, $c \circ e$ is the identity of \mathcal{I}, which completes the proof.

The property of being Noetherian is preserved under localization.

Proposition 7. Let R be a Noetherian domain, and let S be a multiplicative subset of R. Then $S^{-1}R$ is also Noetherian.
Proof. By Proposition 6, any ideal of $S^{-1}R$ has the form $S^{-1}I$ for some ideal I of R. Since R is Noetherian, $I = Ra_1 + \cdots + Ra_n$ for some $a_1, \ldots, a_n \in R$. Then for each $a/s \in S^{-1}I$ with $a \in I$ and $s \in S$, we can write $a = \sum_{i=1}^n r_ia_i$ for some $r_1, \ldots, r_n \in R$ to obtain the equality $a/s = \sum_{i=1}^n (r_i/s)(a_i/1)$. Thus, $S^{-1}I$ is the ideal of $S^{-1}R$ generated by $a_1/1, \ldots, a_n/1$. Hence $S^{-1}R$ is a Noetherian ring. \hfill \Box

In addition, localization preserves the most important ideal operations, as we will see in the following proposition.

Proposition 8. Let R be a commutative ring with identity, and let S be a multiplicative subset of R. For ideals I and J of R, the following statements hold.

1. $S^{-1}(I + J) = S^{-1}I + S^{-1}J$.
2. $S^{-1}(I \cap J) = S^{-1}I \cap S^{-1}J$.
3. $S^{-1}(IJ) = (S^{-1}I)(S^{-1}J)$.
4. $S^{-1}R / S^{-1}I \cong S^{-1}(R/I)$.

Proof. Exercise. \hfill \Box

Localization of Modules. We can localize modules in the same way we have localized rings. Let R be a commutative ring with identity with a multiplicative subset S, and let M be an R-module. It is easy to verify that the relation on $M \times S$ defined by $(m_1, s_1) \sim (m_2, s_2)$ if there is an $s \in S$ such that $(m_1s_2 - m_2s_1)s = 0$ is an equivalence relation, and one denotes the class of (m, s) by m/s and the set of all equivalence classes by $S^{-1}M$. It is routine to verify that the operations

$$
\frac{m_1}{s_1} + \frac{m_2}{s_2} := \frac{s_2m_1 + s_1m_2}{s_1s_2} \quad \text{and} \quad \frac{r}{s} \cdot \frac{m_1}{s_1} := \frac{rm_1}{ss_1},
$$

where $m_1/s_1, m_2/s_2 \in S^{-1}M$ and $r/s \in S^{-1}R$, are well defined and turn $S^{-1}M$ into an $S^{-1}R$-module, which is called the *localization* M at S. In particular, $S^{-1}M$ is an R-module. As Exercise 7 indicates, localization commutes with (direct) sums, intersections, and quotients of modules. The map $\pi: M \to S^{-1}M$ defined by $m \mapsto m/1$ is an R-module homomorphism and has the universal property described in Proposition 9(2).

Proposition 9. Let R be a commutative ring with identity, let S be a multiplicative subset of R, and let M be an R-module. Then the following statements hold.

1. The map $\pi: M \to S^{-1}M$ defined by $m \mapsto m/1$ is an R-module homomorphism and $\ker \pi = \{m \in M : sm = 0$ for some $s \in S\}$.
2. If M' is an R-module such that, for each $s \in S$, left multiplication by s yields a bijection on M' and, in addition, $\varphi: M \to M'$ is an R-module homomorphism, then there is a unique R-module homomorphism $\theta: S^{-1}M \to M'$ such that $\varphi = \theta \circ \pi$.
Any R-module homomorphism $\psi: M \to M'$ induces an $S^{-1}R$-module homomorphism $S^{-1}M \to S^{-1}M'$ via the assignment $m/s \mapsto \psi(m)/s$.

Proof. Exercise.

The localization of a Noetherian R-module is Noetherian.

Proposition 10. Let R be a commutative ring with identity, and let S be a multiplicative subset of R. If M is a Noetherian R-module, then $S^{-1}M$ is also a Noetherian $S^{-1}R$-module.

Proof. See the proof of Proposition 7.

Exercises

Exercise 1. Let R be a commutative ring with identity, and let S be a multiplicative subset of R. The set $\tilde{S} := \{r \in R : \pi(r) \text{ is a unit of } S^{-1}R\}$ is called the saturation of S. Prove the following statements.

1. $\tilde{S} = \{r \in R : rt \in S \text{ for some } t \in R\}$.
2. \tilde{S} is a multiplicative subset of R satisfying $S \subseteq \tilde{S} = \overline{\tilde{S}}$.
3. $S^{-1}R \cong \tilde{S}^{-1}R$.

Exercise 2. Let R be a commutative ring with identity, and let I and J be ideals of R. Prove that $I = J$ if and only if $IR_P = JR_P$ for every maximal ideal P of R.

Exercise 3. Let R be an integral domain, and let S be a multiplicative subset of R. Prove the following statements.

1. If R is a UFD, then $S^{-1}R$ is a UFD.
2. Suppose that S is saturated and R is atomic (i.e., every nonzero nonunit of R factors into irreducibles). If $S^{-1}R$ is a UFD, then R is a UFD.

Exercise 4. Prove Proposition 8.

Exercise 5. Prove Proposition 9.

Exercise 6. Let R be a commutative ring, and let S be a multiplicative subset of R. Let M be an R-module. Let $\pi: M \to S^{-1}M$ be the natural map. Prove the following statements.

1. For each R-submodule N of M, the set $S^{-1}N := \{n/s : n \in N \text{ and } s \in S\}$ is an $S^{-1}R$-submodule of $S^{-1}M$.
2. If L is an $S^{-1}R$-submodule of $S^{-1}M$, then $\pi^{-1}(L)$ is an R-submodule of M.
3. If N is an R-submodule of M, then $N \subseteq \pi^{-1}(S^{-1}N)$. Also, if $N = \pi^{-1}(L)$ for an $S^{-1}R$-submodule L of $S^{-1}M$, then $L = S^{-1}N$. In particular, every $S^{-1}R$-submodule of $S^{-1}M$ has the form $S^{-1}N$ for an R-submodule N of M.
(4) Deduce that there is a bijection between the set of $S^{-1}R$-submodules of $S^{-1}M$ and the set of R-submodules N of M satisfying the condition: if $sm \in N$ for some $s \in S$ and $m \in M$, then $m \in N$.

Exercise 7. Let R be a commutative ring with identity, let S be a multiplicative subset of R, and let M be an R-module. For any submodules M_1 and M_2 of M, prove the following statements.

1. $S^{-1}(M_1 + M_2) = S^{-1}M_1 + S^{-1}M_2$.
2. $S^{-1}(M_1 \oplus M_2) = S^{-1}M_1 \oplus S^{-1}M_2$.
3. $S^{-1}(M_1 \cap M_2) \cong S^{-1}M_1 \cap S^{-1}M_2$.
4. $S^{-1}M / S^{-1}M_1 = S^{-1}(M/M_1)$.