
AN OVERVIEW OF RINGS AND MODULES

FELIX GOTTI

Preliminary on Rings

Here we assume the reader has had at least a brief exposure to the notions of a
group, a ring, and their corresponding substructures and homomorphisms. In what
follows, P, N, and N0 denote the sets of primes, positive integers, and nonnegative
integers, respectively. In addition, we set Ja, bK := {n ∈ Z : a ≤ n ≤ b} for all a, b ∈ Z.

Ideals and Quotient Rings. Let R be a commutative ring with identity element 1.
An additive subgroup I of R is called an ideal if ra ∈ I for all r ∈ R and a ∈ I. Let I be
an ideal. The quotient group R/I is a ring under the operation (r+I)(s+I) := rs+I,
which is called the quotient ring of R by I. It is clear that R/I is a commutative ring
with identity element 1 + I. The group homomorphism π : R → R/I is indeed a ring
homomorphism. If f : R → S is a ring homomorphsim, then ker f = {r ∈ R : f(r) = 0}
is an ideal of R, the set f(R) is a subring of S, and the assignment r + ker f 7→ f(r)
determines a ring isomorphismR/ ker f ∼= f(R). On the other hand, if I ⊆ ker f , then f
factors through π, that is, there exists a unique ring homomorphism φ : R/I → S such
that f = φ ◦ π.

The intersection of ideals of R is again an ideal. We can also add, multiply, and take
quotients of ideals. Let I and J be ideals of R. The set

I + J := {a+ b : a ∈ I and b ∈ J}
is an ideal of R, which is called the sum of I and J . The sum of finitely many ideals is
defined similarly. If I = Ra for some a ∈ R, then I is called principal, in which case,
we also write I = (a). More generally, if I = Ra1 + · · ·+Ran for some a1, . . . , an ∈ R,
then I is called finitely generated. The set

IJ :=
{ n∑

i=1

aibi : n ∈ N, ai ∈ I, and bi ∈ J
}

is an ideal of R, which is called the product of I and J . We can naturally extend this
to the product of finitely many ideals and, accordingly, we let In denote the product
of n copies of I and call it the n-th power of I. It is clear that IJ ⊆ I ∩ J . Finally,

(J : I) :=
{
r ∈ R : rI ⊆ J}
1
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is also an ideal of R, and it is often called the colon or the quotient ideal of J by I.
The verification that I ∩ J , I + J , IJ , and (J : I) are ideals of R is routine, and we
leave this task to the reader.

If I is an ideal of R and S is a subring of R, then I + S is a subring of R and
I ∩ S is an ideal of S. In addition, it is not hard to verify that the assignment
s 7→ s + I determines a surjective ring homomorphism S → (I + S)/I with kernel
I ∩ S (this is often called the Second Isomorphism Theorem). On the other hand,
if J is an ideal of R with I ⊆ J , then the assignment r + I 7→ r + J determines a
surjective ring homomorphism R/I → R/J with kernel J/I (this is often called the
Third Isomorphism Theorem). Finally, the assignment T 7→ T/I for any subring (resp.,
ideal) T of R induces an inclusion-preserving bijection from the set of all subrings (resp.,
ideals) of R containing I to the set of all subrings (resp., ideals) of R/I.

A proper ideal P of R is prime if whenever IJ ⊆ P for ideals I and J in R, either
I ⊆ P or J ⊆ P . In addition, a proper ideal M of R is maximal if for any ideal I with
M ⊆ I ⊆ R, either I = M or I = R.

Proposition 1. Let R be a commutative ring with identity, and let I be an ideal of R.
Then the following statements hold.

(1) I is prime if and only if R/I is an integral domain.

(2) I is maximal if and only if R/I is a field.

Proof. (1) Since r ∈ I if and only if r+I = I for all r ∈ R, this part follows immediately
from the fact that rs ∈ I if and only if (r + I)(s+ I) = I for all r, s ∈ R.

(2) It is clear that a commutative ring with identity is a field if and only if it has
precisely two ideals (the trivial ideals). Thus, this part is a direct consequence from
the fact that the assignment J 7→ J/I induces a bijection from the set of ideals of R
containing I to the set of ideals of R/I. □

Corollary 2. Every maximal ideal is prime.

Not every prime ideal, however, is maximal. For instance, in the ring Z[x] the ideal
(x) is prime, but it is not maximal because (x) is strictly contained in the ideal (x, 2),
which is a proper ideal of Z[x].

UFDs, PIDs, and Euclidean Domains. For a commutative ring R with identity,
we let R× denote its group of units (i.e., invertible elements) of R. Let R be an integral
domain, that is, a commutative ring with identity with no nonzero zero-divisors. For
r, s ∈ R, we say that s divides r and write s |R r if r = st for some t ∈ R. Elements
r, s ∈ R are associates if s = ur for some u ∈ R×. A nonzero element r ∈ R \ R× is
prime if whenever r |R st for some s, t ∈ R either r |R s or r |R t, and we say that r is
irreducible if whenever r = uv for some u, v ∈ R either u ∈ R× or v ∈ R×. It is not
hard to verify that every prime is irreducible (prove this!).
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Definition 3. An integral domain is a unique factorization domain (UFD) if for every
nonzero r ∈ R \R×, the following statements hold:

(1) r = p1 · · · pm for some irreducibles p1, . . . , pm ∈ R, and

(2) if r = q1 · · · qn for irreducibles q1, . . . , qn ∈ R, then n = m and there is a bijection
φ : J1,mK → J1,mK such that qφ(j) and pj are associates for every j ∈ J1,mK.

Every field is trivially a UFD, and Z is a UFD by the Fundamental Theorem of
Arithmetic. We will prove in the next subsection that the rings of polynomials Z[x]
and Z[x, y] are UFDs.

Proposition 4. Let R be a UFD. An element of R is prime if and only if it is irre-
ducible.

Proof. In every integral domain, primes are irreducibles, and we leave the verification
of this fact to the reader. Now suppose that p ∈ R is an irreducible. To check that p is
prime, take r, s ∈ R such that p |R rs, and then write pt = rs for some t ∈ R. As R is
a UFD, we can factor t, r, and s into irreducibles to obtain factorizations of the same
element in both sides of the equality pt = rs. Since p is irreducible and R is a UFD, p
is associate with one of the irreducibles in the factorization of rs, and so either p |R r
or p |R s. Hence p is prime. □

Integral domains whose ideals are principal play an important role in commutative
ring theory.

Definition 5. An integral domain R is called a principal ideal domain (PID) if every
ideal of R is principal.

Every field is clearly a PID. It is not hard to verify that Z is a PID, although it follows
from Theorem 11 below. We will prove in the next theorem that every PID is a UFD.
First, we need to collect the following temporary result (once we prove Theorem 7, this
lemma will become a special case of Proposition 4).

Lemma 6. If R is a PID, then every irreducible in R must be prime.

Proof. Let p be an irreducible in R, and let I be an ideal containing Rp. Since R is a
PID, I = Ra for some a ∈ R. After writing p = ab for some b ∈ R, we see that either
a ∈ R× or b ∈ R×. Accordingly, we find that I = R or I = Rp. Hence the only ideal
properly containing Rp is R, which means that Rp is a maximal ideal and, therefore,
a prime ideal. Hence p is prime. □

Theorem 7. Every PID is a UFD.

Proof. Let R be a PID. Suppose, by way of contradiction, that there is a nonzero
element r0 ∈ R \ R× that does not factor into irreducibles. So r0 = r1s1 for some
r1, s1 ∈ R \ R× such that r1 does not factor into irreducibles. As before, we can write
r1 = r2s2 for some r2, s2 ∈ R \ R× such that r2 does not factor into irreducibles.



4 F. GOTTI

Going on in a similar fashion, we can construct sequences (rn)n∈N0 and (sn)n∈N with
rn, sn ∈ R \ R× such that rn = rn+1sn+1. Thus, the sequence (Rrn)n∈N0 of ideals
satisfies that Rrn ⊊ Rrn+1 and, therefore, I =

⋃
n∈N0

Rrn is an ideal. Since R is a PID,
there is an a ∈ R such that I = Ra. Take an m ∈ N such that a ∈ Rrm. This implies
that I = Rm, and so Rrm+1 = Rrm. In this case, rm and rm+1 are associates, which
contradicts that Rrn+1 strictly contains Rrn. Hence every nonzero element of R \ R×

is a product of irreducibles.

Let us prove now that every nonzero element in R\R× has a unique factorization up
to permutation and associate. To do so we use induction on the number of irreducible
factors (counting repetitions). If a nonzero r in R\R× has a factorization consisting of
only one irreducible, then r itself must be irreducible and r = q1 · · · qn for irreducibles
q1, . . . , qn immediately implies that n = 1 and q1 = r. So assume that there is an
m ∈ N such that every nonzero in R \ R× having a factorization with at most m
irreducibles (counting repetitions) must have a unique factorization. Take r ∈ R \ R×

such that r = p1 · · · pm+1 for irreducibles p1, . . . , pm+1 in R. Suppose that r = q1 · · · qn
for irreducibles q1, . . . , qn. Since pm+1 is prime by Lemma 6, one of the irreducibles
q1, . . . , qn is divisible by pm+1. After relabeling q1, . . . , qn, one can assume that pm+1 |R
qn and so that pm+1 and qn are associates. Take u ∈ R× such that qn = upm+1. Then
p1 · · · pm = (uq1)q2 · · · qn−1. By induction hypothesis, n − 1 = m and we can relabel
q1, . . . , qm such that pi and qi are associates for every i ∈ J1,mK. Hence R is a UFD. □

The converse of Theorem 7 does not hold.

Example 8. Consider the ring Z[x]. We will show in the next section that R[x] is a
UFD provided that R is a UFD. Therefore Z[x] is a UFD. On the other hand, one can
easily verify that the ideal (2, x) is not principal (check this!). Hence Z[x] is not a PID.

The Euclidean division algorithm is an important tool we have at our disposal in Z.
We can consider generalizations of the ring Z where still we can perform the Euclidean
division algorithm. Such rings are called Euclidean domains.

Definition 9. An integral domain R is called a Euclidean domain if there is a map
N : R → N0 with N(0) = 0, called a norm, such that for any elements a, b ∈ R with
b ̸= 0, there are elements q, r ∈ R such that a = qb+r and either r = 0 or N(r) < N(b).

Every field F is a Euclidean domain under the norm N(α) = 0 for every α ∈ F
(indeed, any norm can be taken). In addition, Z is a Euclidean domain under the
norm N(m) = |m|. The ring Z[i] := {a + ib : a, b ∈ Z} of Gaussian integers is also a
Euclidean domain under the norm N(a+ ib) = a2 + b2.

Example 10. Let us argue that the ring Z[i] of Gaussian integers is a Euclidean
domain. Consider N : Z[i] → N0 defined by N(a + ib) = a2 + b2. As N(α) = αᾱ, it
is clear that N(α1α2) = N(α1)N(α2). Take α, β ∈ Z[i] such that β ̸= 0, and write
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α/β = q1 + iq2, where q1, q2 ∈ Q. Now take m,n ∈ Z such that |q1 − m| ≤ 1/2 and
|q2 − n| ≤ 1/2, and then set q = m+ in ∈ Z[i] and r = α− qβ ∈ Z[i]. Since

N(r) = N(β)N
(α
β
− q

)
= N(β)

(
|q1 −m|2 + |q2 − n|2

)
≤ N(β)

2
< N(β),

we obtain that Z[i] is a Euclidean domain.

We proceed to show that every Euclidean domain is a PID.

Theorem 11. Every Euclidean domain is a PID.

Proof. Let R be a Euclidean domain with norm N : R → N0. Take a nonzero ideal I
of R. Let b be a nonzero element of I having minimum norm. We claim that I = Rb.
Clearly, Rb ⊆ I. For the reverse inclusion, consider a ∈ I. Since R is a Euclidean
domain, a = qb + r for some q, r ∈ R, where either r = 0 or N(r) < N(b). Since
r = a − qb ∈ I, the minimality of N(b) ensures that r = 0, and so a = qb ∈ I. As a
result, the inclusion I ⊆ Rb holds and, therefore, I is principal. Hence R is a PID. □

We conclude this subsection emphasizing that not every PID is a Euclidean domain.
However, examples witnessing this are not that easy to construct. One of the most
tractable examples is Z[ω], where ω := (1+ i

√
19)/2. The fact that Z[ω] is a PID that

is not a Euclidean domain is discussed in [1, Subsections 8.1 and 8.2].

Polynomial Rings and Irreducibility. Polynomial rings over fields are also exam-
ples of Euclidean domains.

Proposition 12. If F is a field, then F [x] is a Euclidean domain.

Proof. Exercise (Hint: Use induction.). □

The following criterion is quite useful to argue the irreducibility of a polynomial.

Theorem 13 (Gauss’s lemma). Let R be a UFD, and let p(x) be a polynomial in R[x].
If p(x) = a(x)b(x) for some a(x), b(x) ∈ qf(R)[x], then there exists c ∈ qf(R)× such
that ca(x) ∈ R[x] and c−1b(x) ∈ R[x].

Proof. Assume that p(x) = a(x)b(x) for some a(x), b(x) ∈ qf(R)[x]. If a(x), b(x) ∈ R[x],
then we can take c = 1. We will assume, therefore, that this is not the case, and write
dp(x) = a′(x)b′(x) for some d ∈ R \ R× and a′(x), b′(x) ∈ R[x]. Since R is a UFD, we
can take irreducibles p1, . . . , pn such that d = p1 · · · pn. Set J = pnR[x] and observe
that R[x]/J ∼= (R/Rpn)[x] is an integral domain, and so J is a prime ideal of R[x].
Since (a′(x) + J)(b′(x) + J) = dp(x) + J = J , the fact that R[x]/J is an integral
domain implies that either a′(x) ∈ J or b′(x) ∈ J . Assuming the former, we obtain
that a′(x)/pn ∈ R[x] and so the equality (d/pn)p(x) = (a′(x)/pn)b

′(x) takes place in
R[x]. One can proceed similarly with the rest of the irreducibles p1, . . . , pn−1 in the
factorization of d to find d1, d2 ∈ R with d1d2 = d such that both a′(x)/d1 and b′(x)/d2
belong to R[x]. Now we just need to take c = d−1

1 a′(x)/a(x). □
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Corollary 14. Let R be a UFD, and let p(x) be a nonzero polynomial in R[x] such
that 1 is a greatest common divisor of the coefficients of p(x). Then p(x) is irreducible
in R[x] if and only if it is irreducible in qf(R)[x].

We are in a position now to prove the following promised result.

Theorem 15. If R is a UFD, then R[x] is a UFD.

Proof. Let R be a UFD, and take a nonzero polynomial p(x) ∈ R[x]. It is not hard
to see that the irreducibles of R are still irreducibles in R[x]. Therefore if p(x) ∈ R,
then p(x) factors uniquely into irreducibles. Accordingly, assume that p(x) is a non-
constant polynomial. In addition, if d is a greatest common divisor of the coefficients of
p(x) and p′(x) := p(x)/d, then p(x) = dp′(x) factors uniquely into irreducibles in R[x]
provided that p′(x) factors into irreducibles in R[x]. So we can further assume that 1
is a greatest common divisor of the coefficients of p(x). As qf(R)[x] is a Euclidean
domain and so a UFD, p(x) = p′1(x) . . . p

′
m(x) for unique irreducibles p′1(x), . . . , p

′
m(x)

in qf(R)[x]. It follows now by Gauss’s lemma that p(x) = p1(x) . . . pm(x), where the
polynomials p1(x), . . . , pm(x) ∈ R[x] are F -multiples of p′1(x), . . . , p

′
m(x), respectively.

Since 1 is a greatest common divisor of the coefficients of p(x), the same holds for
p1(x), . . . , pm(x). So it follows from Corollary 14 that p1(x), . . . , pm(x) are irreducibles.

In order to argue the uniqueness, suppose that p(x) = q1(x) . . . qn(x) for irreducibles
polynomials q1(x), . . . , qn(x) in R[x]. Since 1 is a greatest common divisor of the
coefficients of p(x), the same holds for q1(x), . . . , qn(x). In particular, q1(x), . . . , qn(x)
are non-constant, and it follows from Corollary 14 that they are irreducibles in qf(R)[x].
Since qf(R)[x] is a UFD, n = m and, after relabeling the indices of q1(x), . . . , qm(x),
we obtain that aipi(x) = biqi(x), where ai, bi ∈ R, for every i ∈ J1,mK. Fix i ∈ J1,mK.
Since 1 is a greatest common divisor of the coefficients of qi(x), every prime in a
factorization of ai in R, which is also a prime in R[x], must divide bi, and so ai
divides bi in R. Similarly, bi divides ai in R, and so bi = uai for some u ∈ R×. This
implies that pi(x) and qi(x) are associates in R[x]. Hence the uniqueness follows, and
so R[x] is a UFD. □

When used in tandem, Corollary 14 and Proposition 16 (known as Eisenstein’s cri-
terion) are practical tools to argue that certain polynomials are irreducibles.

Proposition 16. Let R be an integral domain, and let p(x) = anx
n + · · · + a1x + a0

be a polynomial in R[x]. If there exists a prime ideal P of R such that

(1) an /∈ P ,

(2) a0, . . . , an−1 ∈ P , and

(3) a0 /∈ P 2,

then p(x) cannot be written in R[x] as a product of two non-constant polynomials. In
addition, if 1 is a greatest common divisor of the coefficients of p(x), then p(x) is
irreducible.
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Proof. Suppose, by way of contradiction, that p(x) = a(x)b(x) for non-constant polyno-
mials a(x), b(x) ∈ R[x]. Then a′(x)b′(x) = (an+P )xn in (R/P )[x], where a′(x) and b′(x)
are the images of a(x) and b(x) under the canonical homomorphism R[x] → (R/P )[x].
Since (R/P )[x] is an integral domain and (an+P )xn is nonzero in (R/P )[x], both a′(x)
and b′(x) are nonzero. This, together with the fact that (an + P )xn is a monomial,
ensures that the constant coefficients of both a′(x) and b′(x) equal P in (R/P )[x], that
is, a(0) ∈ P and b(0) ∈ P . However, this contradicts that a0 /∈ P 2. □

We conclude with an application of Eisenstein’s criterion.

Example 17. For each p ∈ P, we will argue that the polynomial f(x) = xp−1+· · ·+x+1
is irreducible in Q[x]. Since f(x) is monic, in light of Corollary 14 it suffices to show
that f(x) is irreducible in Z[x]. Observe that f(x) is irreducible if and only if f(x+1)
is irreducible. Since xp − 1 = (x− 1)f(x), we see that

(0.1) f(x+ 1) =
(x+ 1)p − 1

x
=

p∑
k=1

(
p

k

)
xk−1.

From the summation in (0.1), it is clear that f(x + 1) is a monic polynomial having
all its non-leading coefficients divisible by p. In addition, the constant coefficient of
f(x + 1) is p, which is not divisible by p2. So by virtue of Eisenstein’s criterion,
f(x + 1) is irreducible, as desired. Moreover, for every n ≥ 2, it is easy to verify that
the polynomial xn−1 + · · ·+ x+ 1 is irreducible if and only if n is prime.

Noetherian Rings. In this subsection, we introduce one of the most relevant classes
of rings in commutative algebra, Noetherian rings.

Definition 18. A commutative ring R with identity is Noetherian if every ascending
chain of ideals of R eventually stabilizes, that is, for every sequence (In)n∈N of ideals
of R with In ⊆ In+1 for every n ∈ N, there exists N ∈ N such that In = IN for every
n ≥ N .

The term “Noetherian” honors Emmy Noether, who first investigated chain condi-
tions on commutative rings in her celebrated paper [3]. We can characterize Noetherian
rings as follows.

Proposition 19. For a commutative ring R, the following statements are equivalent.

(a) R is Noetherian.

(b) Every nonempty set of ideals of R contains a maximal element (under inclu-
sion).

(c) Every ideal of R is finitely generated; that is, if I is an ideal of R, then there
exist a1, . . . , an ∈ R such that I = Ra1 + · · ·+Ran.
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Proof. (a) ⇒ (b): Assume, by way of contradiction, that there is a nonempty set S
consisting of ideals of R that does not contain a maximal member. Take I1 ∈ S . Since
I1 is not a maximal member in S , we can take I2 ∈ S such that I1 ⊊ I2. Since I2 is
not a maximal member of S , we can take I3 ∈ S such that I2 ⊊ I3. Continuing in
this matter we can produce an ascending chain (In)n∈N that does not stabilize, which
contradicts that R is Noetherian.

(b) ⇒ (c): Let I be an ideal of R, and let F be the set of finitely generated ideals
of R contained in I. Observe that F is not empty because it contains the zero ideal.
Therefore F contains a maximal member M by assumption. We can see now that
I = M as, otherwise, for any x ∈ I \ M the existence of the finitely generated ideal
M + xR would contradict the maximality of M . Hence I is finitely generated.

(c) ⇒ (a): Let (In)n∈N be an ascending chain of ideals of R. Then I :=
⋃

n∈N In is
also an ideal of R, and since R is Noetherian we can write I = Ra1 + · · · + Ran for
some a1, . . . , an ∈ I. After taking N ∈ N such that a1, . . . , an ∈ IN , we see that I ⊆ IN
and so that IN = I. This clearly implies that In = I for every n ≥ N , and so (In)n∈N
eventually stabilizes. Hence R is Noetherian. □

Example 20. PIDs and, in particular, Euclidean domains are Noetherian rings. In
addition, the rings of integers of algebraic number fields are Noetherian, even though
many of them are not PIDs. On the other hand, not every UFD is Noetherian; for
instance, Z[x1, x2, . . . ] is a UFD but its prime ideal (x1, x2, . . .) is not finitely generated.

It is not hard to verify that quotients and, therefore, homomorphic images of Noe-
therian rings are Noetherian rings.

Proposition 21. Let R be a Noetherian ring. Then R/I is also a Noetherian ring for
every ideal I of R.

Proof. Every ideal of R/I has the form J/I, where J is an ideal of R containing I.
Fix an ideal J/I of R/I. Since R is Noetherian, we can take r1, . . . , rn ∈ R such that
J = (r1, . . . , rn). Hence J/I = (r1 + I, . . . , rn + I), and so it is a finitely generated
ideal. Thus, R/I is also Noetherian. □

A crucial tool to produce Noetherian rings is Hilbert Basis Theorem, which was
established by D. Hilbert [2] back in 1890.

Theorem 22 (Hilbert Basis Theorem). If R is a Noetherian ring, then R[x] is also a
Noetherian ring.

Proof. For a nonzero f ∈ R[x], we let LC(f) denote the leading coefficient of f . Let J
be an ideal of R[x]. For each n ∈ N0, consider the set

In := {0} ∪ {LC(f) : f ∈ J \ {0} and deg f = n}.
Using that J is an ideal of R[x], we can easily verify that In is an ideal of R for every
n ∈ N0. In addition, observe that (In)n∈N0 is an ascending chain of ideals of R; indeed,
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it follows from the fact that xf ∈ In+1 when f ∈ In. As R is a Noetherian ring, In is
generated by a finite set Ln for every n ∈ N0 and there is an m ∈ N such that In = Im
for every n ≥ m. For each n ∈ N0 and c ∈ Ln, there exists gc ∈ J with deg gc = n such
that LC(gc) = c. Consider the subset L := {gc : c ∈

⋃m
n=1 Ln} of J , and let us argue

that J can be generated by L.
Let Jℓ be the ideal generated by L. As L ⊆ J , it follows that Jℓ ⊆ J . For the

reverse implication, we will argue that every nonzero polynomial f in J belongs to Jℓ
by induction on the degree of f . If deg f = 0, then f = LC(f) ∈ I0 ⊆ Jℓ. Now assume
that deg f ≥ 1 and write f = cnx

n+ · · ·+ c1x+ c0 for some c0, . . . , cn ∈ R with cn ̸= 0,
in which case, cn ∈ In. We consider the following two cases.

Case 1: n ≤ m. Write cn =
∑k

i=1 riℓi for some r1, . . . , rk ∈ R and ℓ1, . . . , ℓk ∈ Ln.

Since n ≤ m, the polynomial g :=
∑k

i=1 rigℓi belongs to Jℓ and has degree at most n.
Indeed, deg g = n because the coefficient of xn in g is cn. As Jℓ ⊆ J , the polynomial
f − g belongs to J and, in addition, it has degree strictly less than n. Hence f − g ∈ Jℓ
by the induction hypothesis, and so f must belong Jℓ.

Case 2: n > m. In this case, cn ∈ In = Im, and we can write cn =
∑k

i=1 riℓi for

some r1, . . . , rk ∈ R and ℓ1, . . . , ℓk ∈ Lm. Consider the polynomial g :=
∑k

i=1 rigℓi ,
and note that it belongs to Jℓ and it has degree at most m. Also, the coefficient
of xm in g is cn. Therefore xn−mg is a polynomial of Jℓ of degree at most n, which
ensures that deg xn−mg = n because the coefficient of xn in xn−mg is cn. This implies
that f − xn−mg is a polynomial in J of degree less than n, and then it follows by the
induction hypothesis that f − xn−mg ∈ Jℓ. Hence f must belong to Jℓ.

As a result, J ⊆ Jℓ, and so J is finitely generated. Thus, we can conclude that R[x]
is a Noetherian ring. □

The following corollary is an immediate consequence of Hilbert Basis Theorem.

Corollary 23. If R is a Noetherian ring, then R[x1, . . . , xn] is a Noetherian ring.

Preliminary on Modules

Definitions and Examples. Modules over commutative rings are generalizations of
vector spaces that play a fundamental role in commutative algebra and, in particular,
in ideal theory. For the rest of this section, let R be a commutative ring with identity.

Definition 24. An additive abelian group M is a module over R (or an R-module)
if there is an action of R on M , that is a map R × M → M given by (r,m) 7→ rm,
satisfying the following properties:

(1) r(m1 +m2) = rm1 + rm2 for all r ∈ R and m1,m2 ∈ M ,

(2) (r1 + r2)m = r1m+ r2m for all r1, r2 ∈ R and m ∈ M ,
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(3) (r1r2)m = r1(r2m) for all r1, r2 ∈ R and m ∈ M , and

(4) 1m = m for all m ∈ M .

It is clear from the above definition that vector spaces are precisely modules over
fields. On the other hand, it is not hard to see that there is a canonical action of Z
over any abelian group A turning A into a Z-module, namely, na := a + · · · + a (the
addition of n copies of a) and (−n)a := −na for all n ∈ N0 and a ∈ A. Also, for n ∈ N,
it is easy to verify that the additive abelian group Rn is an R-module over R under the
action r(a1, . . . , an) := (ra1, . . . , ran). Under this action, Rn is called the free module
of rank n over R.

Let M be an R-module. A subgroup N of M is called an R-submodule of M if it
is is closed under the action of R, that is, rn ∈ N for all r ∈ R and n ∈ N . One can
readily prove that N is a submodule of M if and only if N is nonempty and x+ry ∈ N
for all r ∈ R and x, y ∈ N . Every commutative ring R is an R-module over itself, and
every ideal I of R is clearly an R-submodule. If N is an R-submodule of M , then the
quotient group M/N is an R-module under the action r(m+N) := rm+N .

For R-modules M1 and M2, a map φ : M1 → M2 is called an R-module homomor-
phism if φ is a group homomorphism satisfying that φ(rm) = rφ(m) for all r ∈ R
and m ∈ M . In this case, kerφ is an R-submodule of M1, and it follows that φ is
injective if and only if kerφ = {0}. When φ is bijective, it is called an isomorphism
of R-modules. The canonical group isomorphism M1/ kerφ ∼= φ(M1) (from the First
Isomorphism Theorem) is, indeed, an isomorphism of R-modules. If N1 and N2 are two
R-submodules of M , then the subgroups N1 +N2 and N1 ∩N2 are R-submodules, and
the canonical group isomorphism (N1+N2)/N1

∼= N2/(N1∩N2) is also an isomorphism
of R-modules.

Finitely Generated Modules and Noetherian Modules. The R-module M is
finitely generated if there exist m1, . . . ,mn ∈ M such that M = Rm1 + · · · + Rmn.
Clearly, every commutative ring R with identity is a finitely generated R-module over
itself (generated by 1). In addition, quotient and so homomorphic images of finitely
generated R-modules are finitely generated.

Proposition 25. If N is an R-submodule of a finitely generated R-module M , then
the quotient M/N is also a finitely generated R-module.

Proof. See the proof of Proposition 21. □

Being finitely generated is transitive in the following sense.

Proposition 26. Let R, S, and T be commutative rings with identities. If S is a
finitely generated R-module and T is a finitely generated S-module, then T is a finitely
generated R-module.
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Proof. Since S is a finitely generated R-module, we can take s1, . . . , sm ∈ S such
that S =

∑m
i=1Rsi. In addition, since T is a finitely generated S-module, we can

take t1, . . . , tn ∈ T such that T =
∑n

j=1 Stj. Thus, T =
∑n

j=1

(∑m
i=1Rsi

)
tj =∑m

i=1

∑n
j=1Rsitj, whence T is a finitely generated R-module. □

An R-moduleM is called Noetherian if every R-submodule ofM is finitely generated.
Not every finitely generated R-module is Noetherian. For instance, although the ring
R := Z[xn : n ∈ N] in countably many variables over Z is a finitely generated R-module,
its ideal (x1, x2, . . .) is an R-submodule that is not finitely generated.

Example 27. Let V be a finite-dimensional vector space over a field F . Then every
F -submodule of V is a vector space of dimension at most dimV and, therefore, is
finitely generated. As a result, V is a Noetherian F -module.

As in the case of commutative rings, one can characterize Noetherian modules as
follows.

Proposition 28. For an R-module M , the following statements are equivalent.

(a) M is Noetherian.

(b) M satisfies the ascending chain condition (ACC) on submodules: every ascend-
ing chain of R-submodules of M eventually stabilizes.

(c) Every nonempty set of R-submodules of M contains a maximal element (under
inclusion).

Proof. Exercise. □

As for commutative rings, quotients of Noetherian modules are Noetherian. More-
over, we have the following result.

Proposition 29. Let M be an R-module, and let N be a submodule of M . Then M
is Noetherian if and only if both N and M/N are Noetherian.

Proof. Suppose first that M is Noetherian. Clearly, every R-submodule of N is also
an R-submodule of M and, therefore, is finitely generated. Hence N is Noetherian.
To verify that M/N is Noetherian, take an R-submodule S/N of M/N , where S is an
R-submodule of M . Since M is Noetherian S = Rs1+· · ·+Rsk for some s1, . . . , sk ∈ S.
Hence it immediately follows that S/N = R(s1 +N) + · · ·+R(sk +N), and so S/N is
finitely generated. Thus, R/N is also Noetherian.

Conversely, suppose that both N and M/N are Noetherian R-modules. Let S be an
R-submodule of M , and let S ′ be the R-submodule (S+N)/N of M/N . Since both N
andM/N is Noetherian, S∩N = Rm1+· · ·+Rmk and S ′ = R(m′

1+N)+· · ·+R(m′
ℓ+N)

for some m1, . . . ,mk ∈ S ∩ N and m′
1, . . . ,m

′
ℓ ∈ S + N . Indeed, we can assume that

m′
1, . . . ,m

′
ℓ ∈ S. Now take s ∈ S and write s+N = r′1(m

′
1+N)+· · ·+r′ℓ(m

′
ℓ+N), where

r′1, . . . , r
′
ℓ ∈ R. As s−

∑ℓ
j=1 r

′
jm

′
j ∈ N , we can write s−

∑ℓ
j=1 r

′
jm

′
j =

∑k
i=1 rimi for some
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r1, . . . , rk ∈ R. Thus, s =
∑k

i=1 rimi +
∑ℓ

j=1 r
′
jm

′
j. Hence S can be generated by the

elements m1, . . . ,mk,m
′
1, . . . ,m

′
ℓ. Since each R-submodule of M is finitely generated,

we conclude that M is Noetherian. □

As a corollary of the previous proposition, we can obtain that the direct sum of
finitely many Noetherian R-modules is also Noetherian.

Corollary 30. Let M1, . . . ,Mn be R-modules. If M1, . . . ,Mn are Noetherian, then
M1 ⊕ · · · ⊕Mn is Noetherian.

Proof. It suffices to prove the statement for n = 2. It is clear that M1
∼= M1 ⊕ 0.

Also, since the projection M1 ⊕M2 → M2 has kernel M1 ⊕ 0, it follows from the First
Isomorphism Theorem that M2

∼= (M1 ⊕ M2)/(M1 ⊕ 0). Since both M1 and M2 are
Noetherian, Proposition 29 guarantees that M1 ⊕M2 is Noetherian. □

We have pointed out before that not every finitely generated module is Noether-
ian. However, finitely generated modules over Noetherian rings are Noetherian, as the
following proposition indicates.

Proposition 31. Let M be a finitely generated R-module. If R is Noetherian, then M
is Noetherian.

Proof. Take m1, . . . ,mk ∈ M such that M = Rm1 + · · ·+Rmk, and consider the map
φ : Rk → M given by the assignment (r1, . . . , rk) 7→ r1m1 + · · ·+ rkmk. Clearly, φ is a
surjective R-module homomorphism, and so the First Isomorphism Theorem ensures
that M ∼= Rk/ kerφ. Now observe that Rk/ kerφ is a Noetherian R-module because
direct sums and quotients of Noetherian modules remain Noetherian by Corollary 30
and Proposition 29, respectively. Hence M is Noetherian. □

Nakayama’s Lemma. The main purpose of this section is to prove Nakayama’s
Lemma, which is an important result of commutative algebra that we shall be using in
future lectures. Let M be an R-module. If I is an ideal of R, then

IM :=
{ n∑

i=1

rimi : r1, . . . , rn ∈ I and m1, . . . ,mn ∈ M
}

is an R-submodule ofM . Let us argue the following useful result, known as Nakayama’s
Lemma.

Lemma 32 (Nakayama’s Lemma). Let R be a commutative ring with identity, and
let I be an ideal of R. Then the following statements are equivalent.

(a) I is contained in every maximal ideal of R.

(b) If M is a finitely generated R-module such that IM = M , then M = {0}.
(c) If S is a submodule of a finitely generated R-module M such that IM+S = M ,

then S = M



AN OVERVIEW OF RINGS AND MODULES 13

Proof. (a)⇒ (b): Suppose thatM is a finitely generated R-module such that IM = M .
Now assume, by way of contradiction, that M ̸= {0}. Write M = Rm1 + · · · + Rmn

for m1, . . . ,mn ∈ M assuming that n ∈ N is taken as smallest as possible. Since
M ̸= {0}, we see that m1 ̸= 0. As m1 ∈ M = IM , we can take a1, . . . , an ∈ I such
that m1 =

∑n
i=1 aimi. Then (1 − a1)m1 =

∑n
i=2 aimi. Since a1 ∈ I belongs to every

maximal ideal, one can easily see that 1− a1 ∈ R×. This implies that n ≥ 2 and also
that a1 =

∑n
i=2(1− a1)

−1aimi, which contradicts the minimality of n.

(b) ⇒ (c) Let M be a finitely generated R-module, and let S be an R-submodule
of M satisfying IM + S = M . Then M/S is also a finitely generated R-module. In
addition, since IM+S = M , it follows that M/S = (IM+S)/S = I(M/S). Therefore
M/S is trivial by our hypothesis in part (b), which implies that S = M .

(c) ⇒ (a) Let J be a maximal ideal of R. Then J is an R-submodule of the finitely
generated R-module of R. Since IR+J is an ideal of R containing the maximal ideal J ,
either IR+ J = R or IR+ J = J . Since J ̸= R, part (c) ensures that IR+ J ̸= R. As
a result, I + J = IR + J = J , which implies that I ⊆ J . □
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