IDEAL THEORY IN PRUFER DOMAINS

FELIX GOTTI

PRELIMINARY ON MODULES

Definitions and Examples. Modules over commutative rings are generalizations of
vector spaces that play a fundamental role in commutative algebra and, in particular,
in ideal theory. For the rest of this section, let R be a commutative ring with identity.

Definition 1. An additive abelian group M is a module over R (or an R-module) if
there is an action of R on M, that is a map R x M — M given by (r,m) — rm,
satisfying the following properties:

(1) r(mq + mg) = rmy + rmy for all r € R and my, my € M,
(2) (r1 4 ro)m = riym + rom for all ri,r, € R and m € M,
(3) (rirg)m = r1(rom) for all r1,79 € R and m € M, and

(4) Im =m for all m € M.

It is clear from the above definition that vector spaces are precisely modules over
fields. On the other hand, it is not hard to see that there is a canonical action of 7Z
over any abelian group A turning A into a Z-module, namely, na := a + --- + a (the
addition of n copies of a) and (—n)a := —na for all n € Ny and a € A. Also, forn € N,
it is easy to verify that the additive abelian group R" is an R-module over R under the
action r(ay,...,a,) := (ray,...,ra,). Under this action, R™ is called the free module
of rank n over R.

Let M be an R-module. A subgroup N of M is called an R-submodule of M if it
is is closed under the action of R, that is, rn € N for all r € R and n € N. One can
readily prove that N is a submodule of M if and only if N is nonempty and z+1ry € N
for all r € R and =,y € N. Every commutative ring R is an R-module over itself, and
every ideal I of R is clearly an R-submodule. If N is an R-submodule of M, then the
quotient group M/N is an R-module under the action r(m + N) :=rm + N.

For R-modules M; and M,, a map ¢: My — M> is called an R-module homomor-
phism if ¢ is a group homomorphism satisfying that ¢(rm) = ro(m) for all r € R
and m € M. In this case, ker ¢ is an R-submodule of M;, and it follows that ¢ is
injective if and only if ker ¢ = {0}. When ¢ is bijective, it is called an isomorphism
of R-modules. The canonical group isomorphism M;/ker ¢ = ¢(M;) (from the First
Isomorphism Theorem) is, indeed, an isomorphism of R-modules. If N; and Ny are two

R-submodules of M, then the subgroups N; + Ny and N; N N, are R-submodules, and
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the canonical group isomorphism (Ny+ N2)/Ny = Ny /(N1 N Ny) is also an isomorphism
of R-modules.

The R-module M is finitely generated if there exist mq,...,m, € M such that
M = Rmy + --- + Rm,,. Clearly, every commutative ring R with identity is a finitely
generated R-module over itself. In addition, if N is an R-submodule of a finitely
generated R-module M, then the quotient M /N is also a finitely generated R-module
(verify this).

Proposition 2. Let R, S, and T' be commutative rings with identities. If S is a finitely
generated R-module and T is a finitely generated S-module, then T is a finitely gener-
ated R-module.

Proof. Since S is a finitely generated R-module, we can take sq,...,s, € S such
that S = > ", Rs;. In addition, since 7' is a finitely generated S-module, we can
take t1,...,t, € T such that T = " St;. Thus, T = Y7 (37", Rsi)t; =
> ey 2y Rsitj, whence T is a finitely generated R-module. O

Nakayama’s Lemma. Let M be an R-module. If I is an ideal of R, then
IM = {Zrimi:rl,...,rnefandml,...,mnEM}
i=1

is an R-submodule of M. Let us argue the following useful result, known as Nakayama’s
Lemma.

Lemma 3 (Nakayama’s Lemma). Let R be a commutative ring with identity, and let I
be an ideal of R. Then the following statements are equivalent.

(a) I is contained in every mazximal ideal of R.
(b) If M is a finitely generated R-module such that IM = M, then M = {0}.

(c) If S is a submodule of a finitely generated R-module M such that IM +S = M,
then S = M

Proof. (a) = (b): Suppose that M is a finitely generated R-module such that IM = M.
Now assume, by way of contradiction, that M # {0}. Write M = Rm; + --- + Rm,,
for my,...,m, € M assuming that n € N is taken as smallest as possible. Since
M # {0}, we see that my # 0. As m; € M = IM, we can take ay,...,a, € I such
that my; = >, a;m;. Then (1 —ay)my = >, a;m;. Since a; € I belongs to every
maximal ideal, one can easily see that 1 —a; € R*. This implies that n > 2 and also
that a; = > ,(1 — a1) " 'a;m;, which contradicts the minimality of n.

(b) = (c) Let M be a finitely generated R-module, and let S be an R-submodule
of M satisfying IM + S = M. Then M/S is also a finitely generated R-module. In
addition, since IM +S = M, it follows that M/S = (IM+S)/S = I(M/S). Therefore
M/S is trivial by our hypothesis in part (b), which implies that S = M.
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(c) = (a) Let J be a maximal ideal of R. Then J is an R-submodule of the finitely
generated R-module of R. Since I R+.J is an ideal of R containing the maximal ideal .J,
either IR+ J = Ror IR+ J = J. Since J # R, part (c) ensures that IR+ J # R. As
aresult, [ +J =IR+ J = J, which implies that I C J. O
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