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Preliminary on Modules

Definitions and Examples. Modules over commutative rings are generalizations of
vector spaces that play a fundamental role in commutative algebra and, in particular,
in ideal theory. For the rest of this section, let R be a commutative ring with identity.

Definition 1. An additive abelian group M is a module over R (or an R-module) if
there is an action of R on M , that is a map R × M → M given by (r,m) 7→ rm,
satisfying the following properties:

(1) r(m1 + m2) = rm1 + rm2 for all r ∈ R and m1,m2 ∈M ,

(2) (r1 + r2)m = r1m + r2m for all r1, r2 ∈ R and m ∈M ,

(3) (r1r2)m = r1(r2m) for all r1, r2 ∈ R and m ∈M , and

(4) 1m = m for all m ∈M .

It is clear from the above definition that vector spaces are precisely modules over
fields. On the other hand, it is not hard to see that there is a canonical action of Z
over any abelian group A turning A into a Z-module, namely, na := a + · · · + a (the
addition of n copies of a) and (−n)a := −na for all n ∈ N0 and a ∈ A. Also, for n ∈ N,
it is easy to verify that the additive abelian group Rn is an R-module over R under the
action r(a1, . . . , an) := (ra1, . . . , ran). Under this action, Rn is called the free module
of rank n over R.

Let M be an R-module. A subgroup N of M is called an R-submodule of M if it
is is closed under the action of R, that is, rn ∈ N for all r ∈ R and n ∈ N . One can
readily prove that N is a submodule of M if and only if N is nonempty and x+ry ∈ N
for all r ∈ R and x, y ∈ N . Every commutative ring R is an R-module over itself, and
every ideal I of R is clearly an R-submodule. If N is an R-submodule of M , then the
quotient group M/N is an R-module under the action r(m + N) := rm + N .

For R-modules M1 and M2, a map ϕ : M1 → M2 is called an R-module homomor-
phism if ϕ is a group homomorphism satisfying that ϕ(rm) = rϕ(m) for all r ∈ R
and m ∈ M . In this case, kerϕ is an R-submodule of M1, and it follows that ϕ is
injective if and only if kerϕ = {0}. When ϕ is bijective, it is called an isomorphism
of R-modules. The canonical group isomorphism M1/ kerϕ ∼= ϕ(M1) (from the First
Isomorphism Theorem) is, indeed, an isomorphism of R-modules. If N1 and N2 are two
R-submodules of M , then the subgroups N1 +N2 and N1 ∩N2 are R-submodules, and
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the canonical group isomorphism (N1+N2)/N1
∼= N2/(N1∩N2) is also an isomorphism

of R-modules.
The R-module M is finitely generated if there exist m1, . . . ,mn ∈ M such that

M = Rm1 + · · · + Rmn. Clearly, every commutative ring R with identity is a finitely
generated R-module over itself. In addition, if N is an R-submodule of a finitely
generated R-module M , then the quotient M/N is also a finitely generated R-module
(verify this).

Proposition 2. Let R, S, and T be commutative rings with identities. If S is a finitely
generated R-module and T is a finitely generated S-module, then T is a finitely gener-
ated R-module.

Proof. Since S is a finitely generated R-module, we can take s1, . . . , sm ∈ S such
that S =

∑m
i=1Rsi. In addition, since T is a finitely generated S-module, we can

take t1, . . . , tn ∈ T such that T =
∑n

j=1 Stj. Thus, T =
∑n

j=1

(∑m
i=1Rsi

)
tj =∑m

i=1

∑n
j=1Rsitj, whence T is a finitely generated R-module. �

Nakayama’s Lemma. Let M be an R-module. If I is an ideal of R, then

IM :=
{ n∑

i=1

rimi : r1, . . . , rn ∈ I and m1, . . . ,mn ∈M
}

is an R-submodule of M . Let us argue the following useful result, known as Nakayama’s
Lemma.

Lemma 3 (Nakayama’s Lemma). Let R be a commutative ring with identity, and let I
be an ideal of R. Then the following statements are equivalent.

(a) I is contained in every maximal ideal of R.

(b) If M is a finitely generated R-module such that IM = M , then M = {0}.
(c) If S is a submodule of a finitely generated R-module M such that IM +S = M ,

then S = M

Proof. (a)⇒ (b): Suppose that M is a finitely generated R-module such that IM = M .
Now assume, by way of contradiction, that M 6= {0}. Write M = Rm1 + · · · + Rmn

for m1, . . . ,mn ∈ M assuming that n ∈ N is taken as smallest as possible. Since
M 6= {0}, we see that m1 6= 0. As m1 ∈ M = IM , we can take a1, . . . , an ∈ I such
that m1 =

∑n
i=1 aimi. Then (1 − a1)m1 =

∑n
i=2 aimi. Since a1 ∈ I belongs to every

maximal ideal, one can easily see that 1− a1 ∈ R×. This implies that n ≥ 2 and also
that a1 =

∑n
i=2(1− a1)

−1aimi, which contradicts the minimality of n.

(b) ⇒ (c) Let M be a finitely generated R-module, and let S be an R-submodule
of M satisfying IM + S = M . Then M/S is also a finitely generated R-module. In
addition, since IM +S = M , it follows that M/S = (IM +S)/S = I(M/S). Therefore
M/S is trivial by our hypothesis in part (b), which implies that S = M .
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(c) ⇒ (a) Let J be a maximal ideal of R. Then J is an R-submodule of the finitely
generated R-module of R. Since IR+J is an ideal of R containing the maximal ideal J ,
either IR+ J = R or IR+ J = J . Since J 6= R, part (c) ensures that IR+ J 6= R. As
a result, I + J = IR + J = J , which implies that I ⊆ J . �
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