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Lecture 7: Set Partitions

In this section we introduce set partitions and Stirling numbers of the second kind.
Recall that two sets are called disjoint when their intersection is empty. A partition
of a set S is a collection π := {B1, . . . , Bk} consisting of pairwise disjoint nonempty

subsets of S such that S =
⋃k

j=1Bj. For each j ∈ J1, kK, the set Bj is called a block of

the partition π, and we write |π| = k when π consists of k blocks. In addition, S(n, k)
denotes the number of partitions of [n] having k blocks, and it is called a Stirling
number of the second kind (we will define Stirling numbers of the first kind in coming
lectures).

Let us take a look at some particular cases of the S(n, k). By convention, we assume
that S(0, 0) = 1. Observe that S(n, k) = 0 when k > n. In addition, there is only one
partition of [n] consisting of 1 block (as such a block must be the whole set [n]) and
there is only one partition of [n] consisting of n blocks (as each block is forced to have
size one). Thus, S(n, 1) = S(n, n) = 1.

Example 1. We claim that S(n, 2) = 2n−1 − 1. Indeed, each partition of [n] into
two blocks, namely π := {B1, B2}, can be constructed by first choosing the subset B1

in 2n − 2 ways (as B1 cannot be neither empty nor the whose set [n]), which forces
B2 = [n] \ B1, and then dividing our number of choices, 2n − 2, by 2 to account
for the fact that the order of the blocks inside the partition π is irrelevant. Hence
S(n, 2) = 2n−1 − 1.

Example 2. Let us verify now that S(n, n − 1) =
(
n
2

)
. Indeed, every partition of [n]

into n−1 blocks must contain exactly one block of size 2, which completely determines
the rest of the blocks, namely the remaining n − 2 blocks of size 1. Therefore the set
of partitions of [n] into two blocks is in bijection with the set of subsets of [n] of size 2.
Hence S(n, n− 1) =

(
n
2

)
.

We can compute the number S(n, k) recursively, as the following theorem indicates.

Theorem 3. For any n, k ∈ N with k ≤ n, the following identity holds:

(0.1) S(n, k) = S(n− 1, k − 1) + kS(n− 1, k).
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Proof. By the definition of the Stirling numbers of the second kind, the left-hand side
of (0.1) counts the set of partitions of [n] into k blocks. We will count the same set by
splitting it into two types of partitions: the partitions where n is itself a block and the
partitions where the block containing n has size at least two. To count the partitions
where n is a block by itself, we can take n out, choose a partition of [n− 1] into k − 1
blocks in S(n − 1, k − 1) ways, and enlarge the chosen partition to obtain a partition
of [n] into k blocks by adding {n} as the n-th block. To count the partitions where the
block containing n has size at least two, choose a partition of [n − 1] into k blocks in
S(n− 1, k) different ways, and for each of such choices create a partition of [n] into k
blocks in k different ways by placing n inside one of the k blocks. Putting all together,
we see that the number of partitions of [n] into k blocks is S(n−1, k−1)+kS(n−1, k),
the right-hand side of (0.1). �

We can express the number of surjective functions between finite sets in terms of the
Stirling numbers of the second kind.

Proposition 4. For every n, k ∈ N, the number of surjective functions f : [n]→ [k] is
S(n, k)k!.

Proof. To count the surjective functions f : [n] → [k], we can first fix a partition
π = {B1, . . . , Bk} of [n] into k blocks in S(n, k) ways, then make a linear arrangement
w1w2 · · ·wk with the elements of [k] in k! ways, and then set f−1(wi) = Bi. Hence
there are S(n, k)k! surjective functions f : [n]→ [k]. �

Stirling numbers of the second kind satisfy the following polynomial identity.

Proposition 5. For every n ∈ N, the following polynomial identity holds:

(0.2) xn =
n∑

k=0

S(n, k)(x)k,

where (x)k = x(x− 1) · · · (x− k + 1).

Proof. First, assume that x belongs to N. Observe that the left-hand side of (0.2)
counts the functions f : [n] → [x]. We can also count such functions as follows. For
each k ∈ J0, nK, we count the functions f : [n]→ [x] with |f([n])| = k, which amounts
to choosing a k-subset S of [x] in

(
x
k

)
different ways and then counting the set of

surjective functions from [n] to S, which we can verify that is S(n, k)k! by mimicking
the proof of Corollary 4. Hence there are

∑n
k=0

(
x
k

)
S(n, k)k! =

∑n
k=0 S(n, k)(x)k, and

so (0.2) holds for every n ∈ N. Therefore the polynomial xn −
∑n

k=0 S(n, k)(x)k has
degree at most n and more than n different roots, which implies that it must be the
zero polynomial. Hence (0.2) must hold for every x ∈ R. �

For n ∈ N, the total number of partitions of [n] is denoted by B(n) and called a Bell
number. Then the equality B(n) =

∑n
k=1 S(n, k) holds. We can compute Bell numbers

recursively using the following recurrence identity.
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Theorem 6. For every n ∈ N0, the following identity holds:

(0.3) B(n+ 1) =
n∑

j=0

(
n

j

)
B(j).

Proof. By the definition of a Bell number, the left-hand side of (0.3) counts the set of
partitions of [n + 1]. We can count the same set as follows. For each s ∈ J1, n + 1K,
we can count the partitions of [n+ 1] where the block B containing {n+ 1} has size s:
first choose in

(
n

s−1

)
ways the elements in B that are different from n+ 1, then create

a partition of [n+ 1] \B in B(n+ 1− s) ways. Therefore

B(n+ 1) =
n+1∑
s=1

(
n

s− 1

)
B(n+ 1− s) =

n∑
j=0

(
n

n− j

)
B(j) =

n∑
j=0

(
n

j

)
B(j).

�

Practice Exercises

Exercise 1. For n ∈ N with n ≥ 3, find a formula for S(n, 3).

Exercise 2. Prove that S(n, n− 2) =
(
n
3

)
+ 3
(
n
4

)
for every n ∈ N with n ≥ 2.

Exercise 3. Argue combinatorially that the number of partitions of [n] with no two
consecutive numbers in any block is B(n− 1).
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