MIT 18.211: COMBINATORIAL ANALYSIS

FELIX GOTTI

LECTURE 7: SET PARTITIONS

In this section we introduce set partitions and Stirling numbers of the second kind. Recall that two sets are called disjoint when their intersection is empty. A partition of a set S is a collection $\pi := \{B_1, \ldots, B_k\}$ consisting of pairwise disjoint nonempty subsets of S such that $S = \bigcup_{j=1}^k B_j$. For each $j \in [\![1, k]\!]$, the set B_j is called a block of the partition π , and we write $|\pi| = k$ when π consists of k blocks. In addition, S(n, k)denotes the number of partitions of [n] having k blocks, and it is called a *Stirling* number of the second kind (we will define Stirling numbers of the first kind in coming lectures).

Let us take a look at some particular cases of the S(n, k). By convention, we assume that S(0, 0) = 1. Observe that S(n, k) = 0 when k > n. In addition, there is only one partition of [n] consisting of 1 block (as such a block must be the whole set [n]) and there is only one partition of [n] consisting of n blocks (as each block is forced to have size one). Thus, S(n, 1) = S(n, n) = 1.

Example 1. We claim that $S(n,2) = 2^{n-1} - 1$. Indeed, each partition of [n] into two blocks, namely $\pi := \{B_1, B_2\}$, can be constructed by first choosing the subset B_1 in $2^n - 2$ ways (as B_1 cannot be neither empty nor the whose set [n]), which forces $B_2 = [n] \setminus B_1$, and then dividing our number of choices, $2^n - 2$, by 2 to account for the fact that the order of the blocks inside the partition π is irrelevant. Hence $S(n,2) = 2^{n-1} - 1$.

Example 2. Let us verify now that $S(n, n-1) = \binom{n}{2}$. Indeed, every partition of [n] into n-1 blocks must contain exactly one block of size 2, which completely determines the rest of the blocks, namely the remaining n-2 blocks of size 1. Therefore the set of partitions of [n] into two blocks is in bijection with the set of subsets of [n] of size 2. Hence $S(n, n-1) = \binom{n}{2}$.

We can compute the number S(n, k) recursively, as the following theorem indicates.

Theorem 3. For any $n, k \in \mathbb{N}$ with $k \leq n$, the following identity holds:

(0.1)
$$S(n,k) = S(n-1,k-1) + kS(n-1,k).$$

F. GOTTI

Proof. By the definition of the Stirling numbers of the second kind, the left-hand side of (0.1) counts the set of partitions of [n] into k blocks. We will count the same set by splitting it into two types of partitions: the partitions where n is itself a block and the partitions where the block containing n has size at least two. To count the partitions where n is a block by itself, we can take n out, choose a partition of [n-1] into k-1 blocks in S(n-1, k-1) ways, and enlarge the chosen partition to obtain a partition of [n] into k blocks by adding $\{n\}$ as the n-th block. To count the partitions where the block containing n has size at least two, choose a partition of [n-1] into k blocks in S(n-1, k) different ways, and for each of such choices create a partition of [n] into k blocks in k different ways by placing n inside one of the k blocks. Putting all together, we see that the number of partitions of [n] into k blocks is S(n-1, k-1) + kS(n-1, k), the right-hand side of (0.1).

We can express the number of surjective functions between finite sets in terms of the Stirling numbers of the second kind.

Proposition 4. For every $n, k \in \mathbb{N}$, the number of surjective functions $f: [n] \to [k]$ is S(n,k)k!.

Proof. To count the surjective functions $f: [n] \to [k]$, we can first fix a partition $\pi = \{B_1, \ldots, B_k\}$ of [n] into k blocks in S(n, k) ways, then make a linear arrangement $w_1w_2\cdots w_k$ with the elements of [k] in k! ways, and then set $f^{-1}(w_i) = B_i$. Hence there are S(n,k)k! surjective functions $f: [n] \to [k]$.

Stirling numbers of the second kind satisfy the following polynomial identity.

Proposition 5. For every $n \in \mathbb{N}$, the following polynomial identity holds:

(0.2)
$$x^{n} = \sum_{k=0}^{n} S(n,k)(x)_{k},$$

where $(x)_k = x(x-1)\cdots(x-k+1)$.

Proof. First, assume that x belongs to N. Observe that the left-hand side of (0.2) counts the functions $f: [n] \to [x]$. We can also count such functions as follows. For each $k \in [\![0, n]\!]$, we count the functions $f: [n] \to [x]$ with |f([n])| = k, which amounts to choosing a k-subset S of [x] in $\binom{x}{k}$ different ways and then counting the set of surjective functions from [n] to S, which we can verify that is S(n, k)k! by mimicking the proof of Corollary 4. Hence there are $\sum_{k=0}^{n} \binom{x}{k} S(n, k)k! = \sum_{k=0}^{n} S(n, k)(x)_k$, and so (0.2) holds for every $n \in \mathbb{N}$. Therefore the polynomial $x^n - \sum_{k=0}^{n} S(n, k)(x)_k$ has degree at most n and more than n different roots, which implies that it must be the zero polynomial. Hence (0.2) must hold for every $x \in \mathbb{R}$.

For $n \in \mathbb{N}$, the total number of partitions of [n] is denoted by B(n) and called a *Bell* number. Then the equality $B(n) = \sum_{k=1}^{n} S(n, k)$ holds. We can compute Bell numbers recursively using the following recurrence identity.

Theorem 6. For every $n \in \mathbb{N}_0$, the following identity holds:

(0.3)
$$B(n+1) = \sum_{j=0}^{n} \binom{n}{j} B(j).$$

Proof. By the definition of a Bell number, the left-hand side of (0.3) counts the set of partitions of [n + 1]. We can count the same set as follows. For each $s \in [\![1, n + 1]\!]$, we can count the partitions of [n + 1] where the block *B* containing $\{n + 1\}$ has size *s*: first choose in $\binom{n}{s-1}$ ways the elements in *B* that are different from n + 1, then create a partition of $[n + 1] \setminus B$ in B(n + 1 - s) ways. Therefore

$$B(n+1) = \sum_{s=1}^{n+1} \binom{n}{s-1} B(n+1-s) = \sum_{j=0}^{n} \binom{n}{n-j} B(j) = \sum_{j=0}^{n} \binom{n}{j} B(j).$$

PRACTICE EXERCISES

Exercise 1. For $n \in \mathbb{N}$ with $n \geq 3$, find a formula for S(n, 3).

Exercise 2. Prove that $S(n, n-2) = \binom{n}{3} + 3\binom{n}{4}$ for every $n \in \mathbb{N}$ with $n \geq 2$.

Exercise 3. Argue combinatorially that the number of partitions of [n] with no two consecutive numbers in any block is B(n-1).

References

 M. Bóna: A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory (Fourth Edition), World Scientific, New Jersey, 2017.

DEPARTMENT OF MATHEMATICS, MIT, CAMBRIDGE, MA 02139 *Email address:* fgotti@mit.edu