MIT 18.211: COMBINATORIAL ANALYSIS

FELIX GOTTI

LECTURE 5: PERMUTATION INVERSIONS AND Q-BINOMIALS

In this lecture, we introduce g-analogs of n! and (Z), which are corresponding com-

binatorial expressions depending on a variable ¢ that when we evaluate at ¢ = 1 we
recover n! and (Z), respectively. Most importantly, in the same way n! and (Z) count
linear arrangements and k-subsets of a given set of size n, their corresponding g-analogs
count chain of subspaces and k-dimensional subspaces of a given vector space of di-
mension n (over a field of ¢ elements).

Counting Inversions. Let S,, denote the set consisting of all permutations of [n]. The
inversion table of a permutation w € S, is an n-tuple I(w) := (ay,...,a,), where q;
denotes the number of elements j in w to the left of ¢ with j > 4. Observe that
0 <a; <n—1forevery i€ [n].

Proposition 1. For eachn € N, the map I: S,, — [0,n— 1] x [0,n—2] x --- x [0, 0],
where I(w) is the inversion table of w, is a bijection.

Proof. Set T,, := [0,n — 1] x [0,n — 2] x --- x [0,0]. Since |S,| = |T,,| = n!, it suffices

to show that the function I is surjective. Take (ay,...,a,) € T, and let us construct
w € S, as follows. Consider the element n as an initial linear arrangement of length 1.
Then suppose that we have inserted the elements n — 1,n —2,...,n — ¢+ 1 (in this

order) into the initial length-1 linear arrangement. In the i-th step, insert n — ¢ in the
current length- linear arrangement so that there are exactly a,_; elements to the left
of n — . After inserting 1, we obtain a length-n linear arrangement of [n|, that is, a
permutation w € S,,. Observe that in our construction of w, right after we inserted
n — 1 there were precisely a,,_; elements j in the linear arrangement to the left of n —1¢
such that j > n — ¢, and this number was unchanged during the remaining steps as
only elements less than n — i were inserted then. Hence I(w) = (aq,...,a,), and we
can conclude that I is a surjective. 0

An inversion of w := wyws - - - w, € S, is a pair (w;, w;) such that i < j but w; > w;.
The number of inversions of a permutation w is denoted by inv(w). Observe that if
I(w) = (ay,...,ay) is the inversion table of w, then inv(w) = a; + - -+ + a,.
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Proposition 2. The identity

Y =(1+q)(l+g+¢) - (I+g+-+¢"")

weSn
holds for every n € N.
Proof. Set T,, :=[0,n — 1] x [0,n — 2] x --- x [0,0]. Since the assignment w +— I(w)
induces a bijection S,, — T, and inv(w) = a; + --- + a, for every w € S, with
I(w) = (a1, ..., ay,), it follows that

Z g™ = Z gUtten = nzf nz% Z qrg -
weS, (a1,...,an)ETy a1=0as=0 an=0
n—1 n—2 n—1
=D 4"y g Zq“"—H1+q+---+q'“),
a1=0 az=0 an=0 =0
which yields the desired identity. 0J

Motivated by the previous proposition, for every n € N we define the following
g-analogs
(n)g:=1+q+--+¢" " and (n),!:=(1)4(2)s " (n)g
of n and n!, respectively. By convention, we set (0), = 0, and so (0),! = 1. We call (n),!
the g-factorial of n. In general, and roughly speaking, a g-analog of a mathematical
object, is another mathematical object depending on a variable ¢ that specializes to

the former object when ¢ = 1. One can see that (n); = n and (n);! = n!. Observe that
we can also write (n), and (n),! as follows:

(n)q = ¢ = 1 1 and  (n),! = H : —
] 1

Counting Subspaces. Using the previous g-analog of n!, we can naturally define
g-analogs for the binomial coefficients:

(1), = waims

for every n € Ny and k € [0,n]. It is clear that (Z)q is a g-analog of (Z), and the

n
k)q counts

the set of k-dimensional subspaces of an n-dimensional vector space over a finite field
of size ¢'. Let F, denote a finite field such that |F,| = q. As for vector spaces over R,
a vector space over [, of dimension d can be treated as (i.e., is isomorphic to) Fg.

former is called a g-binomial coefficient. As the next proposition indicates, (

IThere exists a finite field of size ¢ precisely when ¢ is a positive power of a prime, in which case
there is exactly one field of size ¢ (up to isomorphism).
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Proposition 3. For alln € Ny and k € [0,n], the number of k-dimensional subspaces

of the vector space Fy is (Z)q.

Proof. Let A(n, k) denote the number of k-dimensional subspaces of Fy, and let L(n, k)
denote the number of sequences consisting of £ linearly independent vectors in Fy. We
proceed to count the number L(n, k) of k-sequences vy, ..., v; of linearly independent
vectors in Iy in two different ways. Choose vy to be any nonzero vector of Fy, which
can be done in ¢" — 1 different ways. Then choose vy in Fy so that vy is not a multiple

(i.e, a linear combination) of vy; this can be done in ¢" — ¢ ways. In the i-th step,

choose v; in Fy so that it is not a linear combination of vy, ..., v;—1, which can be done
in ¢" — ¢! different ways. Therefore
(0.1) L(n,k) = (¢" = D(¢" =)~ (¢" = ¢" 7).

We can also obtain L(n, k) as follows. First, we choose a k-dimensional subspace W of
Fy in A(n, k) possible ways, and then we choose a linearly independent sequence of k
vectors in W = IF’;, which can be done in (¢* —1)(¢" — q) - - (¢" — ¢*~') by mimicking
the way we just described above to choose a sequence of k linearly independent vectors
of F?. As a result, L(n, k) = A(n,k)(¢" — 1)(¢" — q)--- (¢* — ¢""), and taking into

account the equality (0.1) we obtain
(¢"=D(¢" = q)--(¢" = ¢"")

A(n, k) =
(7, ) (" =@ =) (¢" — ")
n J—1
o Hj:l qqfl
kg1 n—Fk g1
Hj:l (ZTI j=1 qq—l
_ (n)g! _ (n)
(F)q! - (n —k)g! k q.
O
PRACTICE EXERCISES
Exercise 1. For n € N, argue that there are (n),! ordered sequences Vi,...,V, of

subspaces of By with dim V; =i for every i € [n] such that Vi C Vo C--- C V.
Exercise 2. For any n € Ny and k € [0,n], prove that
(), = ("))
k/, ko), k—=1/,
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