MIT 18.211: COMBINATORIAL ANALYSIS

FELIX GOTTI

Lecture 5: Permutation Inversions and Q-Binomials

In this lecture, we introduce q-analogs of n! and $\binom{n}{k}$, which are corresponding combinatorial expressions depending on a variable q that when we evaluate at q = 1 we recover n! and $\binom{n}{k}$, respectively. Most importantly, in the same way n! and $\binom{n}{k}$ count linear arrangements and k-subsets of a given set of size n, their corresponding q-analogs count chain of subspaces and k-dimensional subspaces of a given vector space of dimension n (over a field of q elements).

Counting Inversions. Let S_n denote the set consisting of all permutations of [n]. The *inversion table* of a permutation $w \in S_n$ is an *n*-tuple $I(w) := (a_1, \ldots, a_n)$, where a_i denotes the number of elements j in w to the left of i with j > i. Observe that $0 \le a_i \le n - i$ for every $i \in [n]$.

Proposition 1. For each $n \in \mathbb{N}$, the map $I: S_n \to [\![0, n-1]\!] \times [\![0, n-2]\!] \times \cdots \times [\![0, 0]\!]$, where I(w) is the inversion table of w, is a bijection.

Proof. Set $T_n := [0, n-1] \times [0, n-2] \times \cdots \times [0, 0]$. Since $|S_n| = |T_n| = n!$, it suffices to show that the function I is surjective. Take $(a_1, \ldots, a_n) \in T_n$ and let us construct $w \in S_n$ as follows. Consider the element n as an initial linear arrangement of length 1. Then suppose that we have inserted the elements $n-1, n-2, \ldots, n-i+1$ (in this order) into the initial length-1 linear arrangement. In the *i*-th step, insert n-i in the current length-*i* linear arrangement so that there are exactly a_{n-i} elements to the left of n-i. After inserting 1, we obtain a length-*n* linear arrangement of [n], that is, a permutation $w \in S_n$. Observe that in our construction of w, right after we inserted n-i there were precisely a_{n-i} elements j in the linear arrangement to the left of n-isuch that j > n-i, and this number was unchanged during the remaining steps as only elements less than n-i were inserted then. Hence $I(w) = (a_1, \ldots, a_n)$, and we can conclude that I is a surjective.

An inversion of $w := w_1 w_2 \cdots w_n \in S_n$ is a pair (w_i, w_j) such that i < j but $w_i > w_j$. The number of inversions of a permutation w is denoted by inv(w). Observe that if $I(w) = (a_1, \ldots, a_n)$ is the inversion table of w, then $inv(w) = a_1 + \cdots + a_n$. **Proposition 2.** The identity

$$\sum_{w \in S_n} q^{\text{inv}(w)} = (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1})$$

holds for every $n \in \mathbb{N}$.

Proof. Set $T_n := [0, n-1] \times [0, n-2] \times \cdots \times [0, 0]$. Since the assignment $w \mapsto I(w)$ induces a bijection $S_n \to T_n$, and $inv(w) = a_1 + \cdots + a_n$ for every $w \in S_n$ with $I(w) = (a_1, \ldots, a_n)$, it follows that

$$\sum_{w \in S_n} q^{\operatorname{inv}(w)} = \sum_{(a_1, \dots, a_n) \in T_n} q^{a_1 + \dots + a_n} = \sum_{a_1 = 0}^{n-1} \sum_{a_2 = 0}^{n-2} \dots \sum_{a_n = 0}^{0} q^{a_1} q^{a_2} \dots q^{a_n}$$
$$= \sum_{a_1 = 0}^{n-1} q^{a_1} \sum_{a_2 = 0}^{n-2} q^{a_2} \dots \sum_{a_n = 0}^{0} q^{a_n} = \prod_{k=0}^{n-1} (1 + q + \dots + q^k),$$

which yields the desired identity.

Motivated by the previous proposition, for every $n \in \mathbb{N}$ we define the following q-analogs

 $(n)_q := 1 + q + \dots + q^{n-1}$ and $(n)_q! := (1)_q(2)_q \cdots (n)_q$

of n and n!, respectively. By convention, we set $(0)_q = 0$, and so $(0)_q! = 1$. We call $(n)_q!$ the *q*-factorial of n. In general, and roughly speaking, a *q*-analog of a mathematical object, is another mathematical object depending on a variable q that specializes to the former object when q = 1. One can see that $(n)_1 = n$ and $(n)_1! = n!$. Observe that we can also write $(n)_q$ and $(n)_q!$ as follows:

$$(n)_q = \sum_{j=0}^{n-1} q^j = \frac{q^n - 1}{q - 1}$$
 and $(n)_q! = \prod_{k=1}^n \frac{q^k - 1}{q - 1}.$

Counting Subspaces. Using the previous q-analog of n!, we can naturally define q-analogs for the binomial coefficients:

$$\binom{n}{k}_q := \frac{(n)_q!}{(k)_q!(n-k)_q!}$$

for every $n \in \mathbb{N}_0$ and $k \in [0, n]$. It is clear that $\binom{n}{k}_q$ is a *q*-analog of $\binom{n}{k}$, and the former is called a *q*-binomial coefficient. As the next proposition indicates, $\binom{n}{k}_q$ counts the set of *k*-dimensional subspaces of an *n*-dimensional vector space over a finite field of size q^1 . Let \mathbb{F}_q denote a finite field such that $|\mathbb{F}_q| = q$. As for vector spaces over \mathbb{R} , a vector space over \mathbb{F}_q of dimension *d* can be treated as (i.e., is isomorphic to) \mathbb{F}_q^d .

 $\mathbf{2}$

¹There exists a finite field of size q precisely when q is a positive power of a prime, in which case there is exactly one field of size q (up to isomorphism).

Proposition 3. For all $n \in \mathbb{N}_0$ and $k \in [[0, n]]$, the number of k-dimensional subspaces of the vector space \mathbb{F}_q^n is $\binom{n}{k}_q$.

Proof. Let A(n, k) denote the number of k-dimensional subspaces of \mathbb{F}_q^n , and let L(n, k) denote the number of sequences consisting of k linearly independent vectors in \mathbb{F}_q^n . We proceed to count the number L(n, k) of k-sequences v_1, \ldots, v_k of linearly independent vectors in \mathbb{F}_q^n in two different ways. Choose v_1 to be any nonzero vector of \mathbb{F}_q^n , which can be done in $q^n - 1$ different ways. Then choose v_2 in \mathbb{F}_q^n so that v_2 is not a multiple (i.e., a linear combination) of v_1 ; this can be done in $q^n - q$ ways. In the *i*-th step, choose v_i in \mathbb{F}_q^n so that it is not a linear combination of v_1, \ldots, v_{i-1} , which can be done in $q^n - q^{i-1}$ different ways. Therefore

(0.1)
$$L(n,k) = (q^n - 1)(q^n - q) \cdots (q^n - q^{k-1}).$$

We can also obtain L(n, k) as follows. First, we choose a k-dimensional subspace W of \mathbb{F}_q^n in A(n, k) possible ways, and then we choose a linearly independent sequence of k vectors in $W \cong \mathbb{F}_q^k$, which can be done in $(q^k - 1)(q^n - q) \cdots (q^k - q^{k-1})$ by mimicking the way we just described above to choose a sequence of k linearly independent vectors of \mathbb{F}_q^n . As a result, $L(n, k) = A(n, k)(q^k - 1)(q^k - q) \cdots (q^k - q^{k-1})$, and taking into account the equality (0.1) we obtain

$$A(n,k) = \frac{(q^n - 1)(q^n - q) \cdots (q^n - q^{k-1})}{(q^k - 1)(q^k - q) \cdots (q^k - q^{k-1})}$$
$$= \frac{\prod_{j=1}^n \frac{q^{j-1}}{q-1}}{\prod_{j=1}^k \frac{q^{j-1}}{q-1} \prod_{j=1}^{n-k} \frac{q^{j-1}}{q-1}}$$
$$= \frac{(n)_q!}{(k)_q! \cdot (n-k)_q!} = \binom{n}{k}_q.$$

PRACTICE EXERCISES

Exercise 1. For $n \in \mathbb{N}$, argue that there are $(n)_q!$ ordered sequences V_1, \ldots, V_n of subspaces of \mathbb{F}_q^n with dim $V_i = i$ for every $i \in [n]$ such that $V_1 \subset V_2 \subset \cdots \subset V_n$.

Exercise 2. For any $n \in \mathbb{N}_0$ and $k \in [0, n]$, prove that

$$\binom{n}{k}_{q} = \binom{n-1}{k}_{q} + q^{n-k} \binom{n-1}{k-1}_{q}.$$

DEPARTMENT OF MATHEMATICS, MIT, CAMBRIDGE, MA 02139 *Email address:* fgotti@mit.edu