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Lecture 5: Permutation Inversions and q-Binomials

In this lecture, we introduce q-analogs of n! and
(
n
k

)
, which are corresponding com-

binatorial expressions depending on a variable q that when we evaluate at q = 1 we
recover n! and

(
n
k

)
, respectively. Most importantly, in the same way n! and

(
n
k

)
count

linear arrangements and k-subsets of a given set of size n, their corresponding q-analogs
count chain of subspaces and k-dimensional subspaces of a given vector space of di-
mension n (over a field of q elements).

Counting Inversions. Let Sn denote the set consisting of all permutations of [n]. The
inversion table of a permutation w ∈ Sn is an n-tuple I(w) := (a1, . . . , an), where ai
denotes the number of elements j in w to the left of i with j > i. Observe that
0 ≤ ai ≤ n− i for every i ∈ [n].

Proposition 1. For each n ∈ N, the map I : Sn → J0, n− 1K× J0, n− 2K×· · ·× J0, 0K,
where I(w) is the inversion table of w, is a bijection.

Proof. Set Tn := J0, n− 1K× J0, n− 2K× · · · × J0, 0K. Since |Sn| = |Tn| = n!, it suffices
to show that the function I is surjective. Take (a1, . . . , an) ∈ Tn and let us construct
w ∈ Sn as follows. Consider the element n as an initial linear arrangement of length 1.
Then suppose that we have inserted the elements n − 1, n − 2, . . . , n − i + 1 (in this
order) into the initial length-1 linear arrangement. In the i-th step, insert n− i in the
current length-i linear arrangement so that there are exactly an−i elements to the left
of n − i. After inserting 1, we obtain a length-n linear arrangement of [n], that is, a
permutation w ∈ Sn. Observe that in our construction of w, right after we inserted
n− i there were precisely an−i elements j in the linear arrangement to the left of n− i
such that j > n − i, and this number was unchanged during the remaining steps as
only elements less than n − i were inserted then. Hence I(w) = (a1, . . . , an), and we
can conclude that I is a surjective. �

An inversion of w := w1w2 · · ·wn ∈ Sn is a pair (wi, wj) such that i < j but wi > wj.
The number of inversions of a permutation w is denoted by inv(w). Observe that if
I(w) = (a1, . . . , an) is the inversion table of w, then inv(w) = a1 + · · ·+ an.
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Proposition 2. The identity∑
w∈Sn

qinv(w) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1)

holds for every n ∈ N.

Proof. Set Tn := [0, n − 1] × [0, n − 2] × · · · × [0, 0]. Since the assignment w 7→ I(w)
induces a bijection Sn → Tn, and inv(w) = a1 + · · · + an for every w ∈ Sn with
I(w) = (a1, . . . , an), it follows that∑

w∈Sn

qinv(w) =
∑

(a1,...,an)∈Tn

qa1+···+an =
n−1∑
a1=0

n−2∑
a2=0

· · ·
0∑

an=0

qa1qa2 · · · qan

=
n−1∑
a1=0

qa1
n−2∑
a2=0

qa2 · · ·
0∑

an=0

qan =
n−1∏
k=0

(1 + q + · · ·+ qk),

which yields the desired identity. �

Motivated by the previous proposition, for every n ∈ N we define the following
q-analogs

(n)q := 1 + q + · · ·+ qn−1 and (n)q! := (1)q(2)q · · · (n)q,

of n and n!, respectively. By convention, we set (0)q = 0, and so (0)q! = 1. We call (n)q!
the q-factorial of n. In general, and roughly speaking, a q-analog of a mathematical
object, is another mathematical object depending on a variable q that specializes to
the former object when q = 1. One can see that (n)1 = n and (n)1! = n!. Observe that
we can also write (n)q and (n)q! as follows:

(n)q =
n−1∑
j=0

qj =
qn − 1

q − 1
and (n)q! =

n∏
k=1

qk − 1

q − 1
.

Counting Subspaces. Using the previous q-analog of n!, we can naturally define
q-analogs for the binomial coefficients:(

n

k

)
q

:=
(n)q!

(k)q!(n− k)q!

for every n ∈ N0 and k ∈ J0, nK. It is clear that
(
n
k

)
q

is a q-analog of
(
n
k

)
, and the

former is called a q-binomial coefficient. As the next proposition indicates,
(
n
k

)
q

counts

the set of k-dimensional subspaces of an n-dimensional vector space over a finite field
of size q1. Let Fq denote a finite field such that |Fq| = q. As for vector spaces over R,
a vector space over Fq of dimension d can be treated as (i.e., is isomorphic to) Fd

q .

1There exists a finite field of size q precisely when q is a positive power of a prime, in which case
there is exactly one field of size q (up to isomorphism).
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Proposition 3. For all n ∈ N0 and k ∈ J0, nK, the number of k-dimensional subspaces
of the vector space Fn

q is
(
n
k

)
q
.

Proof. Let A(n, k) denote the number of k-dimensional subspaces of Fn
q , and let L(n, k)

denote the number of sequences consisting of k linearly independent vectors in Fn
q . We

proceed to count the number L(n, k) of k-sequences v1, . . . , vk of linearly independent
vectors in Fn

q in two different ways. Choose v1 to be any nonzero vector of Fn
q , which

can be done in qn− 1 different ways. Then choose v2 in Fn
q so that v2 is not a multiple

(i.e, a linear combination) of v1; this can be done in qn − q ways. In the i-th step,
choose vi in Fn

q so that it is not a linear combination of v1, . . . , vi−1, which can be done

in qn − qi−1 different ways. Therefore

L(n, k) = (qn − 1)(qn − q) · · · (qn − qk−1).(0.1)

We can also obtain L(n, k) as follows. First, we choose a k-dimensional subspace W of
Fn
q in A(n, k) possible ways, and then we choose a linearly independent sequence of k

vectors in W ∼= Fk
q , which can be done in (qk − 1)(qn − q) · · · (qk − qk−1) by mimicking

the way we just described above to choose a sequence of k linearly independent vectors
of Fn

q . As a result, L(n, k) = A(n, k)(qk − 1)(qk − q) · · · (qk − qk−1), and taking into
account the equality (0.1) we obtain

A(n, k) =
(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)

=

∏n
j=1

qj−1
q−1∏k

j=1
qj−1
q−1

∏n−k
j=1

qj−1
q−1

=
(n)q!

(k)q! · (n− k)q!
=

(
n

k

)
q

.

�

Practice Exercises

Exercise 1. For n ∈ N, argue that there are (n)q! ordered sequences V1, . . . , Vn of
subspaces of Fn

q with dimVi = i for every i ∈ [n] such that V1 ⊂ V2 ⊂ · · · ⊂ Vn.

Exercise 2. For any n ∈ N0 and k ∈ J0, nK, prove that(
n

k

)
q

=

(
n− 1

k

)
q

+ qn−k
(
n− 1

k − 1

)
q

.
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