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Lecture 38: Incidence Algebras and Möbius Inversion Formula

In this section we will introduce the incidence algebra of a (locally finite) poset, and
we use this algebra to count the set of chains of the poset. We also use incidence
algebras to prove the Möbius Inversion Formula.

Incidence Algebras. Let P be a locally finite poset, and let I(P ) denote the set
consisting of all intervals of P . Now set

A(P ) := {all functions f : I(P ) → R}.

For r, s ∈ P with r ≤ s, we write f(r, s) instead of the more cumbersome notation
f([r, s]). With the standard addition of functions and scalar product (that is, left-
multiplication by a real number), A(P ) is a vector space over R. Now we define a
multiplication in A(P ) as follows:

(fg)(r, s) :=
∑

r≤x≤s

f(r, x)g(x, s)

for all f, g ∈ A(P ) and r, s ∈ P with r ≤ s. This multiplication operation turns A(P )
into an algebra, that is, a vector space with a compatible multiplication (compatible
means that multiplication is associative and distributes with addition). Now we let 1
denote the function 1 : I(P ) → R given by 1(r, s) = 1 if r = s and 1(r, s) = 0 if r < s.
We can easily see that 1f = f1 = f for every f ∈ A(P ), which means that 1 is the
identity element of A(P ). We proceed to characterize the invertible elements of A(P ).

Proposition 1. Let P be a locally finite poset. For f ∈ A(P ), the following conditions
are equivalent.

(1) f has a right inverse.

(2) f has a left inverse.

(3) f is invertible.

(4) f(r, r) ̸= 0 for all r ∈ P .
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Proof. Suppose first that f has a right inverse, namely, g ∈ A(P ). Then for every
r ∈ P , the equality 1 = f(r, r)g(r, r) holds, which implies that f(r, r) ̸= 0 and so, for
every s ∈ P with r < s, the equality 0 =

∑
r≤x≤s f(r, x)g(x, s) can be written as

(0.1) g(r, s) = −f(r, r)−1
∑

r<x≤s

f(r, x)g(x, s).

In particular, (1) implies (4). On the other hand, if we assume that f(r, r) ̸= 0 for
all r ∈ P , then we can consider the element g ∈ A(P ) defined by g(r, r) = f(r, r)−1

and by (0.1) for any r, s ∈ P with r < s. It follows from the definition of g that g is
a right inverse of f . Hence (4) implies (1). In a completely similar manner, we can
show that (2) and (4) are equivalent statements. Finally, observe that if g1 and g2 are
a left and right inverses of f , respectively, then g1 = g1(fg2) = (g1f)g2 = g2. Thus, (3)
is equivalent to the join statement of (1) and (2), which implies that (3) and (4) are
equivalent statements. □

It is not hard to verify that if f1, . . . , fk ∈ A(P ), then we can extend (by induction)
the formula used to define a multiplication in A(P ) as follows:

(0.2) (f1f2 . . . fk)(r, s) =
∑

r=r0≤r1≤···≤rk=s

f1(r0, r1)f2(r1, r2) · · · fk(rk−1, rk).

We leave this as an exercise (Exercise 1). It turns out that we can count both mul-
tichains and chains of any interval of P by using a very simple element of A(P ). Let
η : I(P ) → R be the element of A(P ) defined by η(r, s) = 1 for any r, s ∈ P with r ≤ s.
Observe that

η2(r, s) =
∑

r≤x≤s

η(r, x)η(x, s) =
∑

r≤x≤s

1 = |[r, s]|.

In fact, for all r, s ∈ P with r ≤ s and ℓ ∈ N, it follows from the identity (0.2) that
ηℓ(r, s) counts the set of multichains of length ℓ in the interval [r, s]. Can we count
chains of length ℓ in a somehow similar manner? The answer is yes.

Proposition 2. Let P be a locally finite poset. For r, s ∈ P with r ≤ s, the following
statements hold.

(1) (η − 1)ℓ(r, s) equals the number of chains from r to s having length ℓ.

(2) 2− η is an invertible element of A(P ), and (2− η)−1(r, s) equals the number of
chains from r to s.
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Proof. (1) Consider the element η − 1 ∈ A(P ) and observe that (η − 1)(r, s) = 1 if
r < s and (η − 1)(r, s) = 0 if r = s. Therefore

(η − 1)ℓ(r, s) =
∑

r=r0≤r1≤···≤rℓ=s

(η − 1)(r0, r1) · · · (η − 1)(rℓ−1, rℓ)

=
∑

r=r0<r1<···<rℓ=s

(η − 1)(r0, r1) · · · (η − 1)(rℓ−1, rℓ)

=
∑

r=r0<r1<···<rℓ=s

1,

which is precisely the number of chains from r to s having length ℓ (the second equality
above follows from the fact that (η − 1)(t, t) = 0 for all t ∈ P ).

(2) The first part of the statement follows from Proposition 1 as (2− η)(r, s) = 1 if
r = s and (2 − η)(r, s) = −1 if r < s. Fix r, s ∈ P with r ≤ s, and suppose that the
length of the longest chain in [r, s] is ℓ. Now fix a subinterval [x, y] of [r, s]. Then it
follows form part (1) that (η − 1)ℓ+1(x, y) = 0, and so

(1− (η − 1)ℓ+1)(x, y) = 1(x, y) + (η − 1)ℓ+1(x, y) = 1(x, y).

Since 2− η = 1− (η − 1), we see that

(2− η)(1+ (η − 1) + (η − 1)2 + · · ·+ (η − 1)ℓ)(x, y) = (1− (η − 1)ℓ+1)(x, y) = 1(x, y).

Therefore (2− η)−1 = 1+(η− 1)+ · · ·+(η− 1)ℓ in the incidence algebra A([r, s]), and
this implies that (2− η)−1(r, s) equals the number of chains from r to s. □

Möbius Inversion Formula. Let P be a poset. A subset S of P is called an (order)
ideal if for each s ∈ S, the fact that r ≤ s in P implies that r ∈ S. For instance, the
set Λs := {r ∈ P | r ≤ s} is an ideal of P for every s ∈ P . Ideals of the form Λs for
any s ∈ P are called principal (order) ideals.
Now assume that P is a locally finite poset. It follows from Proposition 1 that

η ∈ A(P ) is an invertible element. Let µ be the inverse of η in A(P ). This means that
µ(r, r) = 1 for all r ∈ P and

(0.3) µ(r, s) = −
∑

r≤x<s

µ(r, x).

The function µ : I(P ) → R is called the Möbius function of P . The Möbius function
allows us to invert certain identity summations as follows.

Theorem 3 (Möbius Inversion Formula). Let P be a poset, where every principal order
ideal is finite. For any f, g : P → R and s ∈ P ,

f(s) =
∑
r≤s

g(r) ⇔ g(s) =
∑
r≤s

f(r)µ(r, s).
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Proof. For any ν ∈ A(P ) and h : P → R, we can define hν : P → R as follows:

(0.4) (hν)(s) =
∑
r≤s

h(r)ν(r, s)

for all s ∈ P . One can readily check that for all h : P → R and for all α, β ∈ A(P ),
both identities h1 = h and h(αβ) = (hα)β hold. By virtue (0.4), it suffices to argue
that f = gη if and only if g = fµ. This is indeed the case because the equality f = gη
holds if and only if

fµ = (gη)µ = g(ηµ) = g1 = g.

□

Example 4. The set N0 is clearly a locally finite poset with respect to the standard
order. Let µ be the Möbius function of N0. Then µ(n, n) = 1 and µ(n, n + 1) =
−µ(n+ 1, n+ 1) = −1 for every n ∈ N0. In addition, from the identity

µ(n, n+ k) = −µ(n+ k, n+ k)− µ(n+ k − 1, n+ k)−
k−2∑
i=1

µ(n+ i, n+ k)

=
k−2∑
i=1

µ(n+ i, n+ k)

we can deduce inductively that µ(n, n + k) = 0 for all k ≥ 2. Therefore the Möbius
Inversion Formula for the poset N0 states that for any functions f, g : N0 → R

f(n) =
n∑

i=0

g(i) if and only if
(
f(0) = g(0) and g(n) = f(n)− f(n− 1)

)
for every n ∈ N, which can be interpreted as a discrete version of the Fundamental
Theorem of Calculus.

You will prove as an exercise that the Principle of Inclusion-Exclusion is also a
specialization of the Möbius Inversion Formula. The following proposition will be
useful to find an explicit formula for the Möbius function of a Boolean algebra.

Proposition 5. Let P and Q be locally finite poset, and let P × Q denote the direct
product poset of P and Q; that is, (r, s) ≤ (r′, s′) in P × Q if and only if r ≤ r′ in P
and s ≤ s′ in Q. Then P × Q is locally finite and for all (r, s), (r′, s′) ∈ P × Q with
(r, s) ≤ (r′, s′),

µP×Q((r, s), (r
′, s′)) = µP (r, r

′)µQ(s, s
′).

Proof. Exercise 4. □

We can inductively extend Proposition 5 to a finite product P := P1 × · · · × Pn

of locally finite posets P1, . . . , Pn to write µP as the product of the Möbius functions
µP1 , . . . , µPn . As an application of Proposition 5, let us find an explicit formula for the
Möbius function of the Boolean algebra Bn.



COMBINATORIAL ANALYSIS 5

Example 6. The Möbius function µ of the two-element chain {0, 1} with 0 < 1 has
values µ(0, 0) = µ(1, 1) = 1 and µ(0, 1) = −1. Now fix n ∈ N, and observe that
after identifying any S ⊆ [n] with the vector vS := (vS(1), . . . , vS(n)) ∈ {0, 1}n, where
vS(i) = 1 if and only if i ∈ S, we can think of the poset Bn as the product poset
{0, 1}n. Therefore it follows from Proposition 5 that for any S, T ⊆ [n] with S ⊆ T ,

µBn(S, T ) = µBn(vS, vT ) =
n∏

i=1

µ(vS(i), vT (i)) = (−1)|T\S|.

Practice Exercises

Exercise 1. Let P be a locally finite poset, and let f1, . . . , fk be elements in A(P ).
Prove that

(f1f2 . . . fk)(r, s) =
∑

r=r0≤r1≤···≤rk=s

f1(r0, r1)f2(r1, r2) · · · fk(rk−1, rk).

Exercise 2. Let P be a finite poset with 0̂ and 1̂, and let µ be the Möbius function
of P . Prove that ∑

0̂=r0<r1<···<rk=1̂

(−1)kµ(r0, r1)µ(r1, r2) · · · fk(rk−1, rk) = 1.

Exercise 3. Let P be a finite poset with 0̂ and 1̂, and let µ be the Möbius function
of P . Prove that ∑

r≤s

µ(r, s) = 1.

Exercise 4. Prove Proposition 5.

Exercise 5. Deduce the Principle of Inclusion-Exclusion as a specialization of the
Möbius Inversion Formula for the Boolean algebra Bn.
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