MIT 18.211: COMBINATORIAL ANALYSIS

FELIX GOTTI

LECTURE 35: INTRO TO POSETS

In this lecture we take a first look at partially ordered sets.

Definition 1. A pair (P, <), where P is a nonempty set and < is a relation on P, is
called a partially ordered set or poset provided that the following conditions hold.

(1) Reflexivity: x < x for every x € P.
(2) Antisymmetry: for every x,y € P, if z <y and y < x, then x = y.
(3) Transitivity: for every z,y,z € P, if <y and y < z, then z < z.

When there seems to be no risk of ambiguity, we write P instead of (P, <). Let P
be a poset. We say that P is a totally ordered poset or a chain if for all z,y € P either
x <y ory < x that is, any two elements of P are comparable. For instance, the real
line R with the standard order relation is a chain. The set [n] with the standard order
relation is a finite chain, which we denote here by mn. It is clear that a subset S of a
poset P is also a poset under the order relation it inherits from P; the poset S is called
a subposet of P. For instance, Z and Q are subposets of R under the standard order
relation. Let us show less trivial examples.

Example 2. The collection of all subsets of [n] is a poset under the inclusion opera-
tion C, which is denoted by B,. Observe that B, is not a chain when n > 2 as the
subsets {1} and {2} of [n] are not comparable.

Example 3. Let II,, denote the poset consisting of all partitions of [n] under the
refinement relation: two partitions m, 7 € II,, satisfy m < my if and only if every
block of 7 is contained in my. The poset II,, is a chain if and only if n < 2 because
when n > 3, the partitions {{1,2}, {3}, [n] \ {1,2,3}} and {{1},{2,3},[n] \ {1,2,3}}
are not comparable.

Example 4. Let n be a positive integer and let g be a positive power of a prime. Then
let V' := [} be the n-dimensional vector space over F,. Now let B, (q) denote the poset
of all subspaces of V' under inclusion. If n > 2, then the subspaces of V' generated by

the canonical vectors e; and ey are not comparable, and so B, (¢) is not a chain.
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An element x € P is called minimal (resp., mazimal) if there is not an element in P
strictly smaller (resp., larger) than x. An element x € P is called minimum (resp.,
mazimum) if x <y (resp., z > y) for all y € P.

For x,y € P with x <y, we call [z,y] := {2z € P |z < z <y} an interval of P. If
every interval of P is finite we say that P is locally finite. Clearly, every finite poset
is locally finite. When the interval [x,y] has size 2, we say that y covers x and write
T <.

The Hasse diagram of a finite poset P is a graph whose vertices are the element of P
and whose edges are given by the cover relations satisfying that for all s,t € P with

s < t the element s is drawn (horizontally) strictly below ¢. Here is the Hasse diagram
of Bg:

A chain of P is a subposet of P that is a chain as a poset. The length of a chain C'
of Pis ((C) :=|C|—1. A chain zg < 21 < --- < 2y is saturated if z,,_, < x,, for every
n € [f]. A chain of P is mazimal if it is not strictly contained in any other chain.
Observe that every maximal chain is saturated.

Definition 5. A finite poset P is called graded of rank ¢ for some ¢ € N if every
maximal chain of P has length /.

For a poset P, we say that a function p: P — Ny is a rank function if p satisfies the
following conditions:

(1) p(m) = 0 for every minimal element m € P, and
(2) ply) =p(z)+1ifz,y € Pand z < y.
It turns out that every finite graded poset has a rank function.

Proposition 6. Every graded poset has a unique rank function.

Proof. Let P be a graded poset. Define p: P — Ny by setting p(y) := [{z € C' | z < y}|,
where C'is a maximal chain of P containing y. Let us check that p(y) does not depend
on the chosen maximal chain C' containing y. To do so, let C' be another maximal
chain of P containing y. It suffices to show that the sets

Cy={reClz<y} and C):={recC |z<y}

have the same cardinality. If |C,| # |C]|, say |Cy| > |C}|, then the chain C, U (C"\ C,)
is a chain of P whose length is larger than the length of C”, which contradicts the
fact that any two maximal chains of P have the same length. Therefore |C,| = |C]|.
Hence p is well defined.
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It follows directly from the definition of p that p(m) = 0 for every minimal element
m € P. Now, suppose that x,y € P with z <y, and take a maximal chain C' containing
both z and y. Then we see that

ply)=HceCle<ztu{z}={ceClec<z}+1=p(zx)+1.
As a result, p is a rank function.

The uniqueness of the rank function is left as an exercise. 0
Corollary 7. If P is a graded poset, then every interval of P is also a graded poset.

Let P be a graded poset with rank function p: P — Ny. The rank of a € P is p(a).
The rank-generating function of P is the polynomial

4

FPX) =) X/ =3 "¢ X

aeP k=0

where £ is the rank of P and ¢; is the number of elements of P with rank & (for every
k € [0,€]). Let us further discuss the examples we mentioned at the beginning of the
lecture.

Example 8. Every finite chain is clearly a graded poset. In particular, n is a graded
poset of rank n — 1 with rank function given by p(k) = k — 1. The poset n has exactly
one element of rank k for every k € [0,n — 1]. Therefore the rank-generating function
of n is

1—X"

1-X

n—1
fnX) = X" -
k=0

Example 9. For n € N, consider the poset B,. Observe that S is covered by T in
B, if and only if T = S U {t} for some t € T\ S. Therefore any maximal chain in
B,, has length n, and so B, is a graded poset of rank n whose rank function satisfies
p(S) = |S|. In addition, the rank-generating function of B, is

F(Bo, X) = zn: (Z)Xk = (1+X)".

k=0

Example 10. Now consider the poset II,, for n € N. It is not hard to verify that for
all m,m € II,, the relation m; < 7y holds if and only if 7, can be obtained from m;
by joining two distinct blocks of the latter. Therefore every maximal chain of II,, has
length n — 1, and so 11, is a graded poset of rank n — 1 whose rank function satisfies
p(m) = n — |r|. Then the rank-generating function of II,, is

—_
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Example 11. Fix p € P and n € N, and then consider the poset B, (q), where g is
a positive power of p. Two subspaces Wy and Wy of Fy satisfy Wy < W if and only
if Wy C Wy and dim Wy = 1 + dim W;. Then B,(q) is graded of rank n whose rank
function is given by p(W) = dim W. Then the rank-generating function of B, (q) is

=3 (1) X

k=0

A subset A of a poset P is called an antichain if no two elements of A are comparable
in P. A chain cover of P is a collection of finitely many chains of P whose union is P.
It turns out that the minimum number of chains required to have a chain cover of P
coincides with the size of a maximum-size antichain of P.

Theorem 12 (Dilworth’s Theorem). Let P be a finite poset. Then the number of chains
m a mintmum-size chain cover of P equals the size of a maximum-size antichain of P.

Proof. If A is an antichain of P of maximum size and m is the size of any minimum-
size chain cover of P, then the fact that every chain of P intersects A in at most one
element ensures that |A| < m. Thus, it suffices to show that P can be covered using
|A| chains, where A is a maximum-size antichain of P. We proceed by induction on
the size of P. The case |P| = 1 is straightforward. Now assume that n := |P| > 2 and
that the statement of the result we are willing to establish holds for every poset whose
size is strictly less than |P|. We split the rest of the proof into two cases.

Case 1: P has a maximum-size antichain A that contains an element that is not
minimal and an element that is not maximal. Consider now the sets

L:={x € P|x <aforsomeac A}

and
U:={x € P|xz>aforsomeac A}

It is clear that LUU = P and LNU = A. In addition, from the fact that A contains an
element that is not minimal, we deduce that L is nonempty. In a similar way, we deduce
that U is nonempty. Therefore both L and U are subposets of P satisfying |L| < |P)|
and |U| < |P|. Our induction hypothesis guarantees that each of the subposets L
and U has a chain cover consisting of |A| chains. Observe that each a € A belongs to
exactly one chain L, in the chain cover of L and one chain U, in the chain cover of U.
Since, for each a € A, the set L, UU, is a chain of P, it follows that {L,UU, | a € A}
is a chain cover of P consisting of |A| chains.

Case 2: Each maximum-size antichain of P consists of either minimal elements of P
or maximal elements of P. Take x,y € P with x < y such that x is minimal and y is
maximal (perhaps x = y). Since every antichain of the subposet P’ := P\ {x,y} is also
an antichain of P, every maximum-size antichain of P’ must contain |A| — 1 elements
(as such a maximum-size antichain of P’ cannot contain all maximal (or minimal)
elements of P). Now our induction hypothesis allows us to pick a chain cover € of P’
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consisting of |A| — 1 chains. Then ¥ U {x < y} is a chain cover of P consisting of |A]
chains. O

PRACTICE EXERCISES

Exercise 1. Draw the Hasse diagrams of all sixteen posets of size 4.
Exercise 2. For each n € N, how many mazimal chains does B,, have?

Exercise 3. Prove that every poset has at most one rank function.
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