
MIT 18.211: COMBINATORIAL ANALYSIS

FELIX GOTTI

Lecture 35: Intro to Posets

In this lecture we take a first look at partially ordered sets.

Definition 1. A pair (P,≤), where P is a nonempty set and ≤ is a relation on P , is
called a partially ordered set or poset provided that the following conditions hold.

(1) Reflexivity: x ≤ x for every x ∈ P .

(2) Antisymmetry: for every x, y ∈ P , if x ≤ y and y ≤ x, then x = y.

(3) Transitivity: for every x, y, z ∈ P , if x ≤ y and y ≤ z, then x ≤ z.

When there seems to be no risk of ambiguity, we write P instead of (P,≤). Let P
be a poset. We say that P is a totally ordered poset or a chain if for all x, y ∈ P either
x ≤ y or y ≤ x, that is, any two elements of P are comparable. For instance, the real
line R with the standard order relation is a chain. The set [n] with the standard order
relation is a finite chain, which we denote here by n. It is clear that a subset S of a
poset P is also a poset under the order relation it inherits from P ; the poset S is called
a subposet of P . For instance, Z and Q are subposets of R under the standard order
relation. Let us show less trivial examples.

Example 2. The collection of all subsets of [n] is a poset under the inclusion opera-
tion ⊆, which is denoted by Bn. Observe that Bn is not a chain when n ≥ 2 as the
subsets {1} and {2} of [n] are not comparable.

Example 3. Let Πn denote the poset consisting of all partitions of [n] under the
refinement relation: two partitions π1, π2 ∈ Πn satisfy π1 ≤ π2 if and only if every
block of π1 is contained in π2. The poset Πn is a chain if and only if n ≤ 2 because
when n ≥ 3, the partitions {{1, 2}, {3}, [n] \ {1, 2, 3}} and {{1}, {2, 3}, [n] \ {1, 2, 3}}
are not comparable.

Example 4. Let n be a positive integer and let q be a positive power of a prime. Then
let V := Fn

q be the n-dimensional vector space over Fq. Now let Bn(q) denote the poset
of all subspaces of V under inclusion. If n ≥ 2, then the subspaces of V generated by
the canonical vectors e1 and e2 are not comparable, and so Bn(q) is not a chain.

1



2 F. GOTTI

An element x ∈ P is called minimal (resp., maximal) if there is not an element in P
strictly smaller (resp., larger) than x. An element x ∈ P is called minimum (resp.,
maximum) if x ≤ y (resp., x ≥ y) for all y ∈ P .
For x, y ∈ P with x ≤ y, we call [x, y] := {z ∈ P | x ≤ z ≤ y} an interval of P . If

every interval of P is finite we say that P is locally finite. Clearly, every finite poset
is locally finite. When the interval [x, y] has size 2, we say that y covers x and write
x⋖ y.

The Hasse diagram of a finite poset P is a graph whose vertices are the element of P
and whose edges are given by the cover relations satisfying that for all s, t ∈ P with
s < t the element s is drawn (horizontally) strictly below t. Here is the Hasse diagram
of B3:

A chain of P is a subposet of P that is a chain as a poset. The length of a chain C
of P is ℓ(C) := |C| − 1. A chain x0 < x1 < · · · < xℓ is saturated if xn−1 ⋖ xn for every
n ∈ [ℓ]. A chain of P is maximal if it is not strictly contained in any other chain.
Observe that every maximal chain is saturated.

Definition 5. A finite poset P is called graded of rank ℓ for some ℓ ∈ N0 if every
maximal chain of P has length ℓ.

For a poset P , we say that a function ρ : P → N0 is a rank function if ρ satisfies the
following conditions:

(1) ρ(m) = 0 for every minimal element m ∈ P , and

(2) ρ(y) = ρ(x) + 1 if x, y ∈ P and x⋖ y.

It turns out that every finite graded poset has a rank function.

Proposition 6. Every graded poset has a unique rank function.

Proof. Let P be a graded poset. Define ρ : P → N0 by setting ρ(y) := |{x ∈ C | x < y}|,
where C is a maximal chain of P containing y. Let us check that ρ(y) does not depend
on the chosen maximal chain C containing y. To do so, let C ′ be another maximal
chain of P containing y. It suffices to show that the sets

Cy := {x ∈ C | x < y} and C ′
y := {x ∈ C ′ | x < y}

have the same cardinality. If |Cy| ≠ |C ′
y|, say |Cy| > |C ′

y|, then the chain Cy ∪ (C ′ \Cy)
is a chain of P whose length is larger than the length of C ′, which contradicts the
fact that any two maximal chains of P have the same length. Therefore |Cy| = |C ′

y|.
Hence ρ is well defined.
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It follows directly from the definition of ρ that ρ(m) = 0 for every minimal element
m ∈ P . Now, suppose that x, y ∈ P with x⋖y, and take a maximal chain C containing
both x and y. Then we see that

ρ(y) = |{c ∈ C | c < x} ⊔ {x}| = |{c ∈ C | c < x}|+ 1 = ρ(x) + 1.

As a result, ρ is a rank function.

The uniqueness of the rank function is left as an exercise. □

Corollary 7. If P is a graded poset, then every interval of P is also a graded poset.

Let P be a graded poset with rank function ρ : P → N0. The rank of a ∈ P is ρ(a).
The rank-generating function of P is the polynomial

f(P,X) :=
∑
a∈P

Xρ(a) =
ℓ∑

k=0

ckX
k,

where ℓ is the rank of P and ck is the number of elements of P with rank k (for every
k ∈ J0, ℓK). Let us further discuss the examples we mentioned at the beginning of the
lecture.

Example 8. Every finite chain is clearly a graded poset. In particular, n is a graded
poset of rank n− 1 with rank function given by ρ(k) = k− 1. The poset n has exactly
one element of rank k for every k ∈ J0, n− 1K. Therefore the rank-generating function
of n is

f(n, X) =
n−1∑
k=0

Xk =
1−Xn

1−X
.

Example 9. For n ∈ N, consider the poset Bn. Observe that S is covered by T in
Bn if and only if T = S ∪ {t} for some t ∈ T \ S. Therefore any maximal chain in
Bn has length n, and so Bn is a graded poset of rank n whose rank function satisfies
ρ(S) = |S|. In addition, the rank-generating function of Bn is

f(Bn, X) =
n∑

k=0

(
n

k

)
Xk = (1 +X)n.

Example 10. Now consider the poset Πn for n ∈ N. It is not hard to verify that for
all π1, π2 ∈ Πn, the relation π1 ⋖ π2 holds if and only if π2 can be obtained from π1

by joining two distinct blocks of the latter. Therefore every maximal chain of Πn has
length n − 1, and so Πn is a graded poset of rank n − 1 whose rank function satisfies
ρ(π) = n− |π|. Then the rank-generating function of Πn is

f(Πn, X) =
n−1∑
k=0

S(n, n− k)Xk.



4 F. GOTTI

Example 11. Fix p ∈ P and n ∈ N, and then consider the poset Bn(q), where q is
a positive power of p. Two subspaces W1 and W2 of Fn

q satisfy W1 ⋖ W2 if and only
if W1 ⊆ W2 and dimW2 = 1 + dimW1. Then Bn(q) is graded of rank n whose rank
function is given by ρ(W ) = dimW . Then the rank-generating function of Bn(q) is

f(Bn(q), X) =
n∑

k=0

(
n

k

)
q

Xk.

A subset A of a poset P is called an antichain if no two elements of A are comparable
in P . A chain cover of P is a collection of finitely many chains of P whose union is P .
It turns out that the minimum number of chains required to have a chain cover of P
coincides with the size of a maximum-size antichain of P .

Theorem 12 (Dilworth’s Theorem). Let P be a finite poset. Then the number of chains
in a minimum-size chain cover of P equals the size of a maximum-size antichain of P .

Proof. If A is an antichain of P of maximum size and m is the size of any minimum-
size chain cover of P , then the fact that every chain of P intersects A in at most one
element ensures that |A| ≤ m. Thus, it suffices to show that P can be covered using
|A| chains, where A is a maximum-size antichain of P . We proceed by induction on
the size of P . The case |P | = 1 is straightforward. Now assume that n := |P | ≥ 2 and
that the statement of the result we are willing to establish holds for every poset whose
size is strictly less than |P |. We split the rest of the proof into two cases.

Case 1: P has a maximum-size antichain A that contains an element that is not
minimal and an element that is not maximal. Consider now the sets

L := {x ∈ P | x ≤ a for some a ∈ A}
and

U := {x ∈ P | x ≥ a for some a ∈ A}.
It is clear that L∪U = P and L∩U = A. In addition, from the fact that A contains an
element that is not minimal, we deduce that L is nonempty. In a similar way, we deduce
that U is nonempty. Therefore both L and U are subposets of P satisfying |L| < |P |
and |U | < |P |. Our induction hypothesis guarantees that each of the subposets L
and U has a chain cover consisting of |A| chains. Observe that each a ∈ A belongs to
exactly one chain La in the chain cover of L and one chain Ua in the chain cover of U .
Since, for each a ∈ A, the set La ∪Ua is a chain of P , it follows that {La ∪Ua | a ∈ A}
is a chain cover of P consisting of |A| chains.
Case 2: Each maximum-size antichain of P consists of either minimal elements of P
or maximal elements of P . Take x, y ∈ P with x ≤ y such that x is minimal and y is
maximal (perhaps x = y). Since every antichain of the subposet P ′ := P \{x, y} is also
an antichain of P , every maximum-size antichain of P ′ must contain |A| − 1 elements
(as such a maximum-size antichain of P ′ cannot contain all maximal (or minimal)
elements of P ). Now our induction hypothesis allows us to pick a chain cover C of P ′
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consisting of |A| − 1 chains. Then C ∪ {x ≤ y} is a chain cover of P consisting of |A|
chains. □

Practice Exercises

Exercise 1. Draw the Hasse diagrams of all sixteen posets of size 4.

Exercise 2. For each n ∈ N, how many maximal chains does Bn have?

Exercise 3. Prove that every poset has at most one rank function.
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