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Lecture 34: Polytopes and Platonic Solids

A half-space of R3 is the set of all points satisfying the inequality ax + by + cz ≤ d
for prescribed constants a, b, c, d ∈ R. For instance, the set {(x, y, z) ∈ R3 | z ≥ 1} is a
half-space (observe that the inequality z ≥ 1 is equivalent to 0x+0y+(−1)z ≤ −1). A
(3-dimensional) polyhedron is the intersection of finitely many half-spaces. For instance,
the first octant of R3 is a polyhedron as it is the intersection of three half-spaces,
namely, those determined by x ≥ 0, y ≥ 0, and z ≥ 0. Observe that the first octant is
a bounded polyhedron, in the sense that it is not contained inside any sphere (centered
at the origin). There are polyhedra that are bounded. Indeed, we can cut a bounded
piece T of the first octant if we intersect it with the half-space x + y + z ≤ 1:

T := {(x, y, z) ∈ R3 | x, y, z ≥ 0 and x + y + z ≤ 1}.

The bounded polyhedron T is called a tetrahedron.

Definition 1. A bounded polyhedron is called a polytope.

Every polytope is a convex solid whose boundary consists of convex polygons, which
are called faces. The boundary of any face consists of sides and vertices, and these are
respectively called edges and vertices of the given polytope. As for graphs, the degree
of a vertex v of a polytope is the number of edges incident to v. Let P be a polytope.
We make the following geometric observations.

Remark 2.

• The boundary of every face of P consists of at least 3 edges.

• The degree of every vertex of P is at least 3.

In this lecture, we are mainly interested in the relations among the numbers of faces,
edges, and vertices of a polytope. As for planar graphs, we will let F,E, V denote the
numbers of faces, edges, and vertices of P , respectively.

Example 3. We have seen that the tetrahedron T is a polytope. It has 4 faces, 6
edges, and 4 vertices. Therefore V − E + F = 2.
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Example 4. The cube is also a polytope. We can describe the unit cube in terms of
half-spaces as follows:

{(x, y, z) ∈ R3 | 0 ≤ x, y, z ≤ 1}.
Observe that a cube has 6 faces, 12 edges, and 8 vertices, and so it follows that
V − E + F = 2.

The fact that tetrahedra and cubes satisfy the identity V − E + F = 2 is not a
coincidence. As it is the case for planar graphs, any polytope satisfies the Euler’s
formula. Although there is a natural way to think of the boundary of a polytope as a
planar graph (in which case, the relation V −E +F = 2 is simply a special case of the
Euler’s theorem), we will make use of the geometry of polytopes to prove that they
satisfy Euler’s formula.

Theorem 5. Let P be a (3-dimensional) polytope with F faces, E edges, and V vertices.
Then V − E + F = 2.

Proof. Imagine we are holding in our hands the polytope P (whose faces and interior
are transparent), and we are in front of a huge blackboard. If we place one of our
eyes very close to one of the faces of P and look at the blackboard through that face,
then we will see a planar projection of P on the blackboard, which is a graph without
edges crossing and whose convex hull (or biggest face) is the projection of the face we
are looking through. We consider this projection P ′ of P as a planar graph whose
vertices, edges, and faces are the visual projections of the vertices, edges, and faces
of P , except that instead of considering the unbounded face of P ′, we consider the
biggest face given by the convex hull of P ′ (that is, the projection of the face of P we
are looking through).

Let S be the addition of all the interior angles of all the faces of P ′ (including
the biggest face). Let v1, . . . , vm be the vertices of the biggest face of P ′, and let
v′1, . . . , v

′
n be the rest of the vertices. Then adding first the interior angles at the

vertices v1, . . . , vm, we obtain 2 · 180(m− 2), where the factor 2 is due to the fact that,
besides adding the angles of the smaller faces, which add up to 180(m − 2), we also
have to add all the interior angles of the biggest face, which also add up to 180(m−2).
Adding now the angles at the interior vertices v′1, . . . , v

′
n, we obtain 360n. Hence

S = 360(m− 2) + 360n = 360(m + n− 2) = 360(V − 2).

Observe now that if E1, . . . , EF are the numbers of sides of the F faces of P ′, then∑F
i=1 Ei = 2E because every edge is in the boundary of exactly two faces. Then we

can find another expression for S as follows:

S =
F∑
i=1

180(Ei − 2) = 180
( F∑

i=1

Ei

)
− 360F = 360(E − F ).

Therefore 360(V − 2) = S = 360(E − F ), which implies that V − E + F = 2. �
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The following proposition is often a helpful tool.

Proposition 6. Let P be a polytope. If E1, . . . , EF are the numbers of edges of the F
faces of P and d1, . . . , dV are the degrees of the V vertices of P , then

(0.1)
F∑
i=1

Ei =
V∑
j=1

dj = 2E.

Proof. The fact that
∑F

i=1Ei = 2E was already verified in the proof of Theorem 5. The

identity
∑V

j=1 dj = 2E follows as the corresponding identity for graphs, as for polytopes
it is also true that every edge contributes with 2 to the addition of the degrees of all
the vertices. �

Corollary 7. For any polytope P , the inequalities 3F ≤ 2E and 3V ≤ 2E hold.

Proof. We just need to apply Remark 2 and Proposition 6. �

Now that we have lower bounds for the number of edges, let us find upper bounds
for the same.

Proposition 8. Let P be a polytope. Then E ≤ 3F − 6 and E ≤ 3V − 6.

Proof. Since it follows from the previous corollary that 3V ≤ 2E, using Euler’s formula
for polytopes, we obtain that

E = V + F − 2 ≤ 2

3
E + F − 2,

which implies that E
3
≤ F − 2 or, equivalently, E ≤ 3F − 6. We can proceed similarly

to argue that E ≤ 3V − 6. �

Proposition 9. For a polytope P , the following statements hold.

(1) P has a face whose boundary consists of at most 5 edges.

(2) P has a vertex with degree at most 5.

Proof. (1) Suppose, by way of contradiction, that Ei ≥ 6 for every i ∈ [F ]. Since

2E =
F∑
i=1

Ei ≥ 6F,

it follows from the previous proposition that 3F−6 ≥ E ≥ 3F , which is a contradiction.

(2) The argument for this part is similar to that given in part (1). �

Let us say that a polytope is fully symmetric if all its faces equal to the same regular
polygon and all its vertices have the same degree. We are in a position to determine
all fully symmetric polytopes.
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Example 10. Let P be a fully symmetric polytope whose vertices have degree d and
whose faces are regular polygons whose boundaries consist of ` edges. It follows from
Remark 2 and Proposition 9 that 3 ≤ d, ` ≤ 5. We split the rest of our consideration
into three cases.

Case 1: d = 3. Then 3V =
∑V

j=1 d = 2E, and it follows from the Euler’s formula
for polytopes that

2E = 3V = 3(E − F + 2) = 3E − 3F + 6,

and so E = 3F − 6. This implies that `F =
∑F

i=1Ei = 2E = 6F − 12. Hence F
divides 12. Since no polytope can have 3 faces (why?), we see that F ∈ {4, 6, 12}.

• If F = 4, then E = 3F − 6 = 6, and so V = E − F + 2 = 4. There exists
indeed a fully symmetric polytope with 4 faces, 6 edges, and 4 vertices: the
tetrahedron.

• If F = 6, then E = 3F − 6 = 12, and so V = E − F + 2 = 8. In this case, we
obtain the cube.

• If F = 12, then E = 3F − 6 = 30, and so V = E − F + 2 = 20. This is a
polytope called the dodecahedron.

Case 2: d = 4. Then 2E =
∑V

j=1 d = 4V , and so

E = 2V = 2(E − F + 2) = 2E − 2F + 4,

which implies that E = 2F − 4. Therefore `F =
∑F

i=1Ei = 2E = 4F − 8, that is,
(4 − `)F = 8. Since 3 ≤ ` ≤ 5, this implies that ` = 3 and F = 8. As a result,
E = 2F − 4 = 12, and so V = E − F + 2 = 6. The fully symmetric polytope with 8
faces, 12 edges, and 6 vertices is called the octahedron. It can be obtained by gluing
two idential Egyptian pyramids with their (square) bases.

Case 3: d = 5. Then 2E =
∑V

j=1 d = 5V , and so

2E = 5V = 5(E − F + 2) = 5E − 5F + 10,

which implies that 3E = 5F − 10. Therefore 3`F = 3
∑F

i=1Ei = 6E = 10F − 20, that
is, (10− 3`)F = 20. Since 3 ≤ ` ≤ 5, this implies that ` = 3 and F = 20. As a result,
E = 1

3
(5F − 10) = 30, and so V = E − F + 2 = 12. The fully symmetric polytope

with 20 faces, 30 edges, and 12 vertices is called the icosahedron. Therefore there are
exactly five fully symmetric polytopes, which are the so-called Platonic solids :
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Practice Exercises

Exercise 1. See Practice Midterm 4.

Exercise 2. See Practice Midterm 4.
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