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Lecture 33: Euler’s and Kuratowski’s Theorems

In this lecture, we discuss graphs that can be drawn in the plane in such a way
that no two edges cross each other. We state and prove a necessary condition for a
graph to have this property (the Euler’s formula), and finally we state (without proof)
a characterization of these graphs (the Kuratowski’s theorem).

Definition 1. A graph G is called planar if there is a way to draw G in the plane so
that no two distinct edges of G cross each other.

Let G be a planar graph (not necessarily simple). Suppose that G is drawn in the
plane so that no two of its edges cross each other. Then G subdivides the plane into
regions, one of them unbounded and the rest of them bounded and containing no point
of G inside. Such regions are called faces of G. As we prove in the next theorem, the
number of faces of G does not depend on how we draw G in the plane. Throughout
this lecture, we let F denote the number of faces of G. For the sake of consistency and
to simplify notation, we set V := |V (G)| and E := |E(G)|.

In the proof of our next theorem, we need the following definition. An edge e of a
graph is called a bridge if the graph obtained from G by removing e has more connected
component than G.

Theorem 2 (Euler’s Theorem). Let G be a connected planar graph. Then the identity
V − E + F = 2 holds.

Proof. We proceed by induction on E. If E = 1, then the fact that G is connected
guarantees that either G has one vertex v and a loop at v (i.e., an edge connecting v
to itself) or G has to vertices and an edge connecting these two vertices. In the first
case, V = 1, E = 1, and F = 2 (the interior and the exterior of the loop), and so
V − E + F = 1 − 1 + 2 = 2. In the second case, V = 2, E = 1, and F = 1 (the
unbounded face), and so V − E + F = 2− 1 + 1 = 2.

Now suppose that the statement of the theorem holds for any connected planar graph
with less than m edges for some m ∈ N≥2, and suppose that G is a connected planar
graph with E = m. We split the rest of the proof into two cases.

Case 1: Every edge of G is a bridge. In this case, G has no loops and no multiple edges
between any two vertices, and so G is a simple connected graph. As a consequence, G
is a simple graph that is minimally connected or, equivalently, a tree. Since G is a
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tree, we see that V = E + 1 and F = 1 (the only face is the unbounded face). Hence
V − E + F = (E + 1)− E + 1 = 2.

Case 2: G has no bridges. Let e be an edge of G (recall that E ≥ 2). Let f1 and f2
be the faces in both sides of e. Observe that f1 6= f2 as, otherwise, e would be a
bridge. Let G′ be the graph we obtain after removing e from G, and let V ′, E ′, and
F ′ denote the number of vertices, edges, and faces of G′, respectively. Clearly, V = V ′

and E = E ′+ 1. In addition, F = F ′+ 1 because, after we delete e, the faces f1 and f2
are merged into one face and no other face of G is affected. In addition, G′ is connected
because e is not a bridge of G. Since E ′ < E, it follows from our induction hypothesis
that V ′ − E ′ + F ′ = 2. Therefore

V − E + F = V ′ − (E ′ + 1) + (F ′ + 1) = V ′ − E ′ + F ′ = 2.

�

The previous theorem can be used to show that certain graphs are not planar. Let
us take a look at two important small graphs that are not planar.

Example 3. Let us show that the complete graph K5 is not planar. Suppose, by
way of contradiction, that K5 is planar. Then it follows from Euler’s theorem that
V − E + F = 2. We certainly know that V = 5 and E =

(
5
2

)
= 10. Therefore

F = E − V + 2 = 10 − 5 + 2 = 7. Observe that we can draw G in the plane without
crossing edges so that the boundary of its unbounded face consists of three edges, in
which case, the boundary of any face of K5 must consist of three edges (this is because
any two distinct vertices of K5 are adjacent). Hence we can count the edges of K5

by counting the edges of each face and then dividing the obtained number by 2 to
compensate for the fact that each edge is in the boundary of exactly two faces: doing
so, we obtain that E = 3·7

2
= 11.5, a contradiction. Thus, K5 is not planar.

Example 4. We will argue now that the complete bipartite graph K3,3 is not planar.
As before, we assume, towards a contradiction, that K3,3 is planar and use Euler’s
theorem to obtain that F = E − V + 2 = 9 − 6 + 2 = 5. Since K3,3 is a bipartite
graph, it has no cycles of length 3, and so the boundary of each face of K3,3 consists
of 4 edges. Thus, the number of edges of K3,3 can be obtained by counting the edges of
each of the 5 faces of K3,3 and then dividing by 2 to compensate for double counting:
doing so, we obtain that 9 = E = 4·5

2
= 10, a contradiction.

We conclude with an important theorem about planarity that characterizes planar
graphs and is due to Kuratowski. First, we need a couple of definitions. For a graph G,
let e be an edge of G and let v be a vertex of G of degree 2. Consider the following
transformations of G.

(1) We add a new vertex to G in the middle of the edge e.

(2) We replace v and both edges incident to v by a new edge connecting the neigh-
bors of v (possibly only one neighbor).
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A graph G′ is called edge-equivalent to G provided that G′ can be obtained from G
by a sequence of finitely many transformation as those described above.

Theorem 5 (Kuratowski’s Theorem). A graph is non-planar if and only if it contains
a subgraph that is edge-equivalent to either K5 or K3,3.

Practice Exercises

Exercise 1. Show that the Petersen graph is not planar.

Exercise 2. Let G be a simple planar graph. Prove that G has a vertex of degree at
most 5.
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