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Lecture 32: Brooks’ Theorem

For a simple graph G, we let ∆(G) denote the maximum of all degrees of the vertices
of G, that is, ∆(G) = max{deg v | v ∈ V (G)}. A simple graph G is called k-regular, if
any two vertices of G have the same degree, that is, deg v = ∆(G) for every v ∈ V (G).

Example 1. A path graph P is regular if and only if its length is 1, in which case
∆(P ) = 1. If a path graph P has length at least two, then it is not regular as it
contains vertices of degree 1 and at least one vertex of degree 2; in this case, ∆(P ) = 2.

Example 2. For every n ≥ 3, the graph Cn is 2-regular, and so ∆(G) = 2.

Example 3. The complete graph Kn is the (n− 1)-regular graph with n vertices. In
this case, ∆(Kn) = n− 1.

The main purpose of this lecture is to prove Brooks’ Theorem, which gives an upper
bound for the chromatic number of simple connected graphs with two exceptions. For
the proof we present here, we need the following definition: in a simple graph G, a
cut-vertex v ∈ V (G) is a vertex satisfying that G\{v} has more connected components
than G does.

Observe that χ(C2n+1) = 3 = ∆(C2n+1) + 1 and χ(Kn) = n = ∆(Kn) + 1 for every
n ∈ N. As the following theorem indicates, odd-length cycles and complete graphs are
the only simple connected graphs G satisfying χ(G) > ∆(G).

Theorem 4 (Brooks’ Theorem). Let G be a simple connected graph. If G is neither
complete nor an odd cycle, then χ(G) ≤ ∆(G).

Proof. Set k := ∆(G). Since G is not complete, k ≥ 2. If k = 2, the fact that G is
connected implies that G is a cycle, and so G must be an even cycle. As every even
cycle is bipartite, we see that χ(G) = 2 = k in this case. Assume from now on that
k ≥ 3, and fix k colors. We split the rest of the proof in the following cases.

Case 1: The graph G is not k-regular. In this case, there is a vertex vn ∈ V (G) with
deg vn ≤ k− 1. Since G is connected we can take a spanning tree T of G and label the
vertices of G by vn, vn−1, . . . , v2, v1 coloring first the vertices which are closer to vn in
the tree T (that is, we label the vertices decreasingly as we travel the vn-rooted tree T
by levels). Thus, for any j ∈ [n−1], the vertex vj has at most k−1 adjacent vertices to
its left in the sequence v1, v2, . . . , vn; this is because vj has at least one adjacent vertex
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in the subsequence vj+1, . . . , vn (namely, the first vertex in its path to vn through T ).
Observe that vn also have at most k−1 adjacent to its left in the sequence v1, . . . , vn−1
because deg vn ≤ k − 1. Then we can properly k-color G as follows: color v1 using
one of the k colors, and once we have properly k-colored v1, . . . , vj, if still j < n, then
color vj+1 with a color that is different from the colors of its k− 1 adjacent vertices in
v1, . . . , vj. Hence we have found a proper k-color of G, and so χ(G) ≤ k in this case.

Case 2: The graph G is k-regular. We will again split the rest of the proof into two
parts.

Case 2.1: The graph G contains a cut-vertex. Assume that one of the k fixed colors
is red. Let v be a cut-vertex of G, and let G1, . . . , Gm be the connected components
we obtain after removing v from G. Since v is a cut-vertex, m ≥ 2. Fix j ∈ [m],
and consider the subgraph G′j of G induced by the vertices V (G) ∪ {v}. Since m ≥ 1,
the vertex v is adjacent to some vertex in V (G) \ V (G′j), and so degG′

j
v ≤ k − 1.

Then we can take a spanning tree of G′j rooted at v as we did in Case 1, and use this
tree to obtain a proper k-coloring of G′j. After a possible renaming of colors, we can
assume that in the obtained proper k-coloring of G′j, the vertex v is red. Thus, we
have obtained, for each j ∈ [m], a proper k-coloring of G′j (all of such coloring using
the same k prescribed colors), and in each of such coloring, v is red. Since there are
not edges from Gi to Gj if i 6= j (because v is a cut-vertex of G), the proper k-coloring
we have found for G′1, . . . , G

′
m give rise to a proper k-coloring of G. Thus, χ(G) ≤ k

also holds in this case.

Case 2.2: The graph G does not contain any cut-vertex. Fix v ∈ V (G), and consider
the graph G′ := G \ {v}. Since G has no cut-vertices, G′ is a connected graph. We
split the rest of the proof into the following two cases.

Case 2.2.1: The graph G′ contains no vertex-cut. Set v1 := x. Since G is k-regular but
not complete, v1 cannot be adjacent to the rest of the vertices. This, along with the
fact that G′, ensures the existence of v2 ∈ V (G) such that there is path of length 2 in
G from v1 to v2, and so there is a vertex vn that is adjacent to both v1 and v2. Since v2
is not a cut-vertex of G′, we can take a spanning tree T of the graph G\{v1, v2} rooted
at vn and, as in Case 1, we can label the vertices G\{v1, v2} using the tree T so that for
every j ∈ J3, n− 1K the vertex vj has at most k− 1 adjacent to its left in the sequence
v1, v2, v3, . . . , vn−1, vn. Then we can properly color v1 and v2 with the same color (as
they are not adjacent), and then we can properly color the vertices v3, . . . , vn−1 as we
did in Case 1. Now observe that although vn has k adjacent vertices, two of them share
the same color, and so we can choose one of the k prescribed colors for vn to obtain a
proper vertex k-coloring for G.

Case 2.2.2: This part will be an exercise in Problem Set 6. �
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Practice Exercises

Exercise 1. Show that a complete graph has no cut-vertex.

Exercise 2. Which are the cut vertex of a forest?
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