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Lecture 31: Chromatic Numbers and Polynomials

Chromatic Numbers. For k ∈ N, a proper k-coloring of a simple graph G is a
(coloring) function f : V (G) → [k] such that no two adjacent vertices of G have the
same image under f . We can think of every index in the codomain of f as the label of
a color we can use to color some of the vertices of G via f . We say that a simple graph
G is k-colorable if it admits a proper k-coloring. It is clear that if G is k-colorable,
then it is m-colorable for every m ≥ k.

Definition 1. The chromatic number of a simple graph G, denoted by χ(G), is the
minimum among all k ∈ N such that G is k-colorable.

Let us take a look at a few examples.

Example 2. For n ∈ N, let G be a graph satisfying |V (G)| = n and |E(G)| = 0.
Since G does not have any adjacency relation, we easily see that χ(G) = 1. In this
case, a proper 1-coloring is given by the constant function f : V (G)→ {1}.

Example 3. Suppose that G is a bipartite graph on the parts X and Y . If E(G)
is empty, then G is one of the graphs in Example 2, and so χ(G) = 0. Otherwise,
χ(G) ≥ 2. Verifying that χ(G) = 2 amounts to observing that we can color the
vertices in X black and the vertices in Y white, which yield the proper 2-coloring
f : V (G) → {1, 2} defined by f(v) = 1 if and only if v ∈ X. On the other hand,it
is clear that every 2-colorable graph is bipartite graph on the parts determine by the
two colors. This example explains why often the parts of a bipartite graph are called
coloring/color classes. In particular, we obtain that

• every graph consisting of a path is 2-colorable,

• every tree is 2-colorable, and

• the complete bipartite graphs Km,n are 2-colorable.

Example 4. Let us find the chromatic number of Cn for each n ∈ N with n ≥ 3.
If n is even, then Cn is bipartite, and so χ(Cn) = 2. Suppose then that n is odd.
Since Cn is not bipartite, χ(Cn) ≥ 3. Now write n = 2k + 1 for some k ∈ N, and
set V (Cn) = {v1, v2, . . . , v2k+1} such that v1v2 . . . v2k+1v1 is the only cycle of Cn. To
exhibit a proper 3-coloring of G, color the vertices in {v2j−1 | j ∈ [k]} blue, the vertices
in {v2j | j ∈ [k]} green, and the vertex v2k+1 red. Hence χ(Cn) = 3 when n is odd.
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Every graph G we have seen so far admits a proper 3-coloring, regardless of the sizes
of V (G) and E(G). For certain graphs (with large numbers of vertices and edges),
indeed, just a few colors suffices to obtain proper coloring. For instance, the famous
4-Color Theorem, which was an open conjecture for quite a while, states that 4 colors
suffices to color the regions of any map in such a way that no two regions sharing
a border have the same color. The graph modeling the regions of a man and the
adjacency/border relations between regions has the property of being planar, and we
will discuss them in coming lectures. For now, let us finish this subsection illustrating
with a very simple example that there are graphs whose vertex colorings have at least
as many colors as their numbers of vertices.

Example 5. For n ∈ N, let Kn be the complete graph on [n]. Since any two distinct
vertices of Kn are adjacent, in order to have a proper coloring of Kn not two vertex can
have the same color. From this observation, it follows immediately that χ(Kn) = n.

Chromatic Polynomials. In this subsection we introduce an important tool to study
graph coloring, the chromatic polynomial.

Proposition 6. Let G be a simple graph with labeled vertices. For every k ∈ N, let pk
denote the number of proper k-coloring of G. Then there exists a unique polynomial
p(x) ∈ Q[x] such that p(k) = pk for every k ∈ N.

Proof. Set n := |V (G)|. For each m ∈ N, let cm denote the number of proper m-
coloring of G that use all the m colors. It is clear that cm = 0 when m > n. Observe
that, for each k ∈ N, the set of proper k-coloring of G can be counted as follows: for
each m ∈ J1, nK, we choose in

(
k
m

)
ways the m colors that we will actually use in the

proper k-coloring of G (here
(
k
m

)
= 0 if m > k), and then we properly color the vertices

of G using all the m chosen colors in cm possible ways. As a result, we obtain that

(0.1) pk =
n∑

m=1

(
k

m

)
cm.

With the identity (0.1) in mind, we now consider the polynomial p(x) :=
∑n

m=1

(
x
m

)
cm,

where
(
x
m

)
= x(x−1)···(x−m+1)

m!
. It is clear that p(x) is a polynomial with coefficients in Q.

In addition, any other polynomial q(x) ∈ Q[x] such that q(k) = pk will be equal to
p(x) because they coincide at infinitely many real numbers, namely, N. �

We are in a position now to define the chromatic polynomial of a simple graph.

Definition 7. With notation as in Proposition 6, the polynomial p(x) is called the
chromatic polynomial of the graph G.
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Example 8. For n ∈ N, let G be the graph on [n] with |E(G)| = 0. Since there is
no adjacency relations in G, given k colors, we can choose any of the k colors for each
vertex to obtain a proper k-coloring. So there is a total of kn proper k-colorings of G.
Hence the chromatic polynomial of G is p(x) = xn.

Example 9. For n ∈ N, let Pn be the path graph on [n] with adjacency relations ij
for any i ∈ [n − 1] and j = i + 1. In order to properly color V (Pn) using k color, we
can pick any of the k colors for the vertex 1, any of the k− 1 colors different from that
of vertex 1 to color vertex 2, and so on until we have to pick any of the k − 1 colors
different from that of vertex n− 1 to color vertex n. Thus, the chromatic polynomial
of Pn is p(x) = x(x− 1)n−1.

Example 10. For n ∈ N, let Kn be the complete graph on [n]. To properly color
V (Kn) with k color, k must be at least n, in which case, we can use k color for the
vertex 1, then k − 1 color for the vertex 2, and so on until we use k − n+ 1 colors for
the vertex n. Therefore the chromatic polynomial of Kn is

p(x) = x(x− 1) · · · (x− n+ 1) = n!

(
x

n

)
.

Practice Exercises

Exercise 1. Find the chromatic polynomial of a tree with n vertices.

Exercise 2. For n1, n2, n3 ∈ N, find the chromatic number and the chromatic polyno-
mial of the complete tripartite graph Kn1,n2,n3 on the parts [n1], [n1 + n2] \ [n1], and
[n1 + n2 + n3] \ [n1 + n2].
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