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FELIX GOTTI

LECTURE 30: MATCHING AND HALL’S THEOREM

Hall’s Theorem. Let G be a simple graph, and let S be a subset of E(G). If no two
edges in S form a path, then we say that S is a matching of G. A matching S of G is
called a perfect matching if every vertex of GG is covered by an edge of S.

Definition 1. Let G be a bipartite graph on the parts X and Y, and let S be a
matching of G. If every vertex in X is covered by an edge of S, then we say that S is
a perfect matching of X into Y.

For a graph G and a subset T" of V(G), we let Ng(T') denote the set of vertices of G
that are adjacent to some vertex in 7', that is,

Ng(T) :={v e V(G) | vw € E(G) for some w € T}.

Observe that if G is bipartite on the parts A and B, then Ng(T) C B for any T' C A.
We proceed to prove the main result of this lecture, which is due to Philip Hall and is
often called Hall’s Marriage Theorem.

Theorem 2. For a bipartite graph G on the parts X and Y, the following conditions
are equivalent.

(a) There is a perfect matching of X into Y.
(b) For each T C X, the inequality |T| < |Ng(T)| holds.

Proof. (a) = (b): Let S be a perfect matching of X into Y. As S is a perfect matching,
for every x € X there exists a unique y, € Y such that zy, € S. Define the map

f: X =Y by f(z) = y,. Since S is a matching, the function f is injective. Therefore
for any T' C X, we see that |T| = | f(T')| < |Ng(T')| because f(T) C Ng(T).

(b) = (a): Conversely, suppose that |T'| < |Ng(T')| for each T'C X. We will prove
that there exists a perfect matching of X into Y by induction on n := |X|. If n =1,
then the only vertex x in X must be adjacent to some vertex y in Y by condition (b)
and, therefore, {xy} is a perfect matching of X into Y. Now assume that every bipartite
graph on the parts X’ and Y’ with | X’| < |X| and satisfying condition (b) has a perfect
matching of X’ into Y. We split the rest of the proof into two cases.

Case 1: For every nonempty proper subset T of X (that is, T C X), the strict inequality
|T| < |Ng(T)| holds. Take x € X and y € Ng({z}). Let G’ be the bipartite graph we
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obtain by removing z and y (and the edges incident to them) from G. Now for every
subset A of X \ {z}, we see that

[Ner(A)] = [Na(A)| -1 = |A],

where the last inequality holds because A is a strict subset of X. By induction hy-
pothesis, there exists a perfect matching S" in G’ of X \ {z} into Y\ {y}. It is clear
now that S’ U {zy} is a perfect matching in G of X into Y.

Case 2: There exists a nonempty proper subset A of X such that |A| = |[Ng(A)|. Let
(1 be the subgraph of G induced by the set of vertices AU Ng(A), and let Gy be the
subgraph of G we obtain by removing A U Ng(A) (and their incident edges) from G.
It is clear that G; = (A, Ng(A)) and Gy = (X \ A, Y \ Ng(A)) are bipartite graphs.
Let us show that both G and G, satisfy condition (b).

To show that Gy satisfies (b), take T C A. It follows by the way G was constructed
that Ng,(T) = Ng(T'). As a result, |[Ng,(T)| = |Na(T')] > |T|. Then G, satisfies
condition (b). In order to argue that G5 also satisfies condition (b), take 7" C X \ A
and observe that Ng(7T"U A) = Ng(A) U Ng, (1), where the union on the right-hand
side is disjoint. Since |[Ng(T"U A)| > |T" U A| and |Ng(A)| = |A],

[Ne, (T = [Na(T"U A)| = [Na(A)| = |[T"U A] — |A] = (IT"| + |A]) — |A] = |T7].

Therefore G5 also satisfies condition (b). Since |A| < |X| and |X \ A] < |X]|, our
induction hypothesis guarantees the existence of a perfect matching S; in G of A into
N¢(A) and a perfect matching Sy in G of X \ A into Y\ Ng(A). Then it follows from
the construction of G; and G4 that S; U .Ss is a perfect matching in G of X into Y,
which concludes the proof. 0

We conclude this lecture characterizing whether a matching on a simple graph has
the maximum number of edges possible. First, we need the following definitions.

Definition 3. Let GG be a graph, and let M be a matching of G. A path P = vjvy ... vy
is called M-alternating provided that v;_jv; € M if and only if v;v;41 ¢ M. An M-
alternating path is called M-augmenting if it starts and ends at vertices that are not
covered by any edge of M.

We can now characterize the maximum-length matching in terms of augmenting
paths.

Theorem 4. Let G be a simple graph with a matching M. Then M is a maximum-
length matching if and only if G has no M -augmenting paths.

Proof. For the direct implication suppose that G has an M-augmenting path, namely, P.
Since P is an M-augmenting path, it has odd length. Write P := vjvy ... vg. Since P
is M-alternating and none of the vertices v; and v, is covered by M, we see that
PN M = {vpvops1 | k € [¢ — 1]}. Then after replacing the subset P N M of M by



COMBINATORIAL ANALYSIS 3

the subset {vor_1v9x | k € [£]}, we would obtain a new matching of G with more edges
than M.

For the reverse implication, suppose that G has no M-augmenting path. Let M’ be
a maximum-length matching. If M’ = M, then we are done. Suppose, therefore, that
M # M'. Let S be the symmetric difference of M and M’ that is, the set of edges
in M U M’ that are not in M N M’. Now observe that every connected component of
the graph (V(G),S) is either a path or an (even-length) cycle whose edges alternate
between M’ and M. Now the maximality of M’, along with the non-existence of M-
augmenting paths, guarantees that each connected component of (V(G),S) that is a
path must be a path of even length. Hence |M| = |M’|, which implies that M is a
maximum-length cycle. 0

PRACTICE EXERCISES

Exercise 1. [1, Exercise 11.4] Let G be a bipartite graph on the parts X and Y, and
suppose that the inequality degx > degy holds for allx € X andy € Y. Prove that X
has a perfect matching into Y .

Exercise 2. [1, Exercise 11.12] Let G be a regular bipartite graph (that is, a graph with
all the vertices having the same degree). Prove that G has a perfect matching.

REFERENCES

[1] M. Béna: A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory
(Fourth Edition), World Scientific, New Jersey, 2017.

DEPARTMENT OF MATHEMATICS, MIT, CAMBRIDGE, MA 02139
Email address: fgotti@mit.edu



	Lecture 30: Matching and Hall's Theorem
	Hall's Theorem

	Practice Exercises
	References

