
Combinatorial Analysis (MIT Fall 2021) Instructor: Felix Gotti

Midterm 3 (Solutions by Daniil Kliuev)

Problem 1 For m,n ∈ N, let Km,n be the simple graph with V (Km,n) = [m + n] and
E(Km,n) = {ij | i ∈ [m] and j ∈ [m+n]\ [m]}. Find the number of Hamiltonian cycles
of Km,n.

Solution. Let A = [m], B = [m + n] \ [m] be two components of complete bipartite
graph Km,n.

Let C = u1 . . . um+n be a Hamiltonian cycle in Km,n. We can assume that u1 ∈ A.
Since each edge goes from A to B we get that ui ∈ A for odd i and ui ∈ B for even i.
Since u1um+n is an edge it follows that m+n is even. It follows that half of vertices in
C belong to A and half of vertices belong to B. Since C goes through all vertices of
Km,n we have |A| = |B|, so m = n.

Hence in the case when m 6= n the answer is zero.
In the case m = n = 1 the answer is also zero.
Suppose that m = n > 1. We can write each Hamiltonian cycle as 1 = u1u2 . . . u2m.

We count the number of Hamiltonian cycles as follows. Vertex u2 is any element of B,
so there are m choices for u2. Vertex u3 is any element of A except u1, so there are m−1
choice for u3. More generally, u2i is any element of B except u2, . . . , u2i−2, so there are
(m + 1 − i) choices for u2i and u2i+1 is any element of A except u1, u3, . . . , u2i−1, so
there are m− i choices for u2i+1.

This gives us m!(m− 1)! choices for the sequence (u2, . . . , u2m). Any Hamiltonian
cycle can be written in two ways: 1u2 . . . u2m and 1u2m . . . u2, so the answer is

m!(m− 1)!

2
.

�

Problem 2 Let G be a simple connected graph. Prove that any two paths in G of
maximum length have a vertex in common.

Solution. Let P1 = u1u2 . . . uk, P2 = v1v2 . . . vk be two paths of maximum length k in
G. Suppose they don’t have any common vertex. Consider all paths that have start
at V (P1) and end at V (P2), and choose a path of minimal length P0 = uiw1 . . . wlvj,
where l ≥ 0.

We claim that w1, . . . , wl do not belong to V (P1). Assume that this is not the case,
ws ∈ V (P1) for some 1 ≤ s ≤ l. Then ws . . . wlvj is a path that starts at V (P1),
ends at V (P2) and has smaller length than P0, contradiction. Similarly we prove that
w1, . . . , wl do not belong to V (P2).
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It follows that P3 = u1 . . . uiw1 . . . wlvj . . . v1, P4 = uk . . . uiw1 . . . wlvj . . . v1 are
simple paths. They have length l(P3) = i + l + j, l(P4) = (k − i + 1) + l + (k − j + 1).
Hence l(P3) + l(P4) = 2k + 2 + 2l ≥ 2k + 2. We deduce that P3 or P4 have length at
least k + 1. Therefore P1 and P2 are not paths of maximum length, a contradiction. �

Problem 3 For n ∈ N with n ≥ 3, let Gn be the directed multi-graph satisfying the
following two conditions:

• |V (Gn)| = n and |E(Gn)| = 2n, and

• the vertices of Gn are arranged around a circle and, for every vertex of Gn, there is
an arrow to its clockwise neighbor and an arrow to its counterclockwise neighbor.

1. (2.5 pts) Compute the number of Eulerian trails of Gn.

2. (2.5 pts) Compute the number of rooted spanning trees of Gn (a rooted spanning
tree is a spanning tree with a distinguished vertex).

Solution.

1. Let vertices of Gn be v1, . . . , vn with arrows from vi to vi±1 for all i from 1 to n.
Here vn+1 = v1. We assume that the starting vertex of the trails is v1, the answer
for the other vertices will be the same. We also assume that the first edge of the
trail is v1v2, the answer for v1vn is the same.

There are two options: either first n + 1 vertices of the trail are v1v2 . . . vnv1
or there exists 2 ≤ k ≤ n such that the first k + 1 vertices of the trail are
v1v2 . . . vkvk−1. In the first case we cannot use edge v1 → v2 again, so we must
go back to vn. This allows us to write both cases uniformly: for 2 ≤ k ≤ n + 1
first k + 1 vertices are v1 . . . vkvk−1.

The edge vk−1 → vk is already used, so we must go to vk−2. The edge vk−2 →
vk−1 is already used, so we must go to vk−3 and so on all the way back to v1:
v1 . . . vkvk−1 . . . v1.

In the case k = n + 1 we are done. In the other cases the only edges left are the
path v1 → vn → · · · → vk and the same path reversed vk → vk+1 → · · · → v1.
We see that the only way to use the edge vk → vk+1 is to continue as follows:
v1 . . . vkvk−1 . . . v1vn . . . vk+1vkvk+1 . . . vnv1.

Hence we obtain one path for each k from 2 to n + 1, n paths. There were
2 choices of initial direction and n choices of starting vertex, so there are 2n2

Eulerian trails.
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2. The underlying simple undirected graph of Gn is a cycle Cn. It has n edges. Any
spanning tree has n− 1 edges, so we have to delete one edge from Cn to obtain
a spanning tree. Deleting any of n edges of Cn will give us a spanning tree.

There are also n ways to choose a root of this tree.

It remains to choose for any undirected edge which directed edge corresponds to
it. There are two ways to do it. Multiplying everything we get that the answer
is n22n−1.

�

Problem 4 Let G be a simple connected graph, and let T and T ′ be two spanning
trees of G. Prove that, for every e ∈ E(T ), there exists e′ ∈ E(T ′) such that the edges
(E(T ) \ {e}) ∪ {e′} form a spanning tree of G.

Solution. Let n be the number of vertices in G. Since T is a tree T \ {e} is a forest. It
has n− 2 edges. A forest with k connected components has n−k edges. Hence T \{e}
consists of two connected components, C1 and C2.

Let u ∈ V (C1), v ∈ V (C2). Consider the path between u and v in T ′, u =
u0u1u2 · · ·uk = v. Let i be the minimal positive integer such that ui belongs to V (C2).
By the definition of i we have ui−1 ∈ V (C1). It follows that the edge e = ui−1ui belongs
to T ′ and connects C1 and C2.

We deduce that (T \ {e}) ∪ {e′} is a connected graph. It has n− 1 edge, so it is a
tree. All edges of this tree belong to E(G), so this is a spanning tree. �


