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Lecture 26: Spanning Trees and Kruskal’s Algorithm

Definition 1. Let G be a graph. A subgraph T of G is called a spanning tree of G
provided that T is a tree and V (T ) = V (G).

Every connected graph has a spanning tree.

Proposition 2. Every connected simple graph has a spanning tree.

Proof. Let G be a connected simple graph. Then the set G consisting of all connected
subgraphs G′ of G with V (G′) = V (G) is clearly nonempty (indeed, G ∈ G ). Among
all the graphs in G , let T be one minimizing the number of edges. Then T is minimally
connected, and so a tree. Since V (T ) = V (G), we conclude that T is a spanning tree
of G. �

It follows from Cayley’s theorem that, for every n ∈ N≥2, the number of spanning
trees of the complete graph Kn is nn−2.

Let G be a connected simple graph, and let ω : E(G) → R>0 be a map. For every
subgraph G′ of G, define the weight of G′ to be

ω(G′) :=
∑

e∈E(G′)

ω(e).

Among all the spanning trees T of G, we would like to find one with minimum weight.
To do so, we assume that every edge of G is initially unmarked, and we sequentially
mark one of the minimum-weight unmarked edges that do not create any cycle in G
with the already marked edges. More formally, we have the following algorithm/recipe.

Kruskal’s Algorithm (G is a connected graph and ω : E(G)→ R>0 is a function)

(1) Assume that the edges of G are initially unmarked.

(2) Let S be the subset of E(G) consisting of all unmarked edges that do not create
any cycles with the marked edges.

(3) If S is nonempty, then
• take e ∈ S with ω(e) = min{ω(s) | s ∈ S};
• mark e;
• return to step (2).

(4) Set T to be the subgraph of G whose edges are the marked edges.
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It is clear that after repeating steps (1) and (2) finitely many times (indeed, |V (G)|−1
times), we will obtain a spanning tree T of G. However, it is not obvious at all that
such a spanning tree will minimize the sum

∑
e∈E(T ) ω(e). We will prove this in the

next theorem. First, let us argue the following proposition.

Proposition 3. Let F and F ′ be two forests with V (F ) = V (F ′). If |E(F )| < |E(F ′)|,
then there is an edge e ∈ E(F ′)\E(F ) such that the graph we obtain from F by adding
the edge e is still a forest.

Proof. Suppose, towards a contradiction, that if we add any edge e ∈ E(F ′) \ E(F )
to the forest F we produce a cycle. Then every edge in E(F ′) connects two vertices
that belong to the same connected component of F . This implies that the number of
connected components k′ of F ′ is at least the number of connected components k of F .
Therefore |E(F ′)| = |V (F ′)| − k′ ≤ |V (F )| − k = |E(F )|, which is a contradiction. �

We are in a position to prove that Kruskal’s algorithm yields a minimum spanning
tree.

Theorem 4 (Kruskal’s Algorithm Correctness). Let G and ω : E(G) → R>0 be as
above. If T is a spanning tree obtained from successive iterations of steps (1) and (2)
above, then

∑
e∈E(T ) ω(e) ≤

∑
e∈E(T ′) ω(e) for any spanning tree T ′ of G.

Proof. Set n := |V (G)|. Suppose, by way of contradiction, that there exists a spanning
tree T ′ of G such that

∑
e∈E(T ′) ω(e) <

∑
e∈E(T ) ω(e). Let e1, . . . , en−1 and e′1, . . . , e

′
n−1

be the edges of T and T ′ labeled in increasing order of weight, that is,

ω(e1) ≤ ω(e2) ≤ · · · ≤ ω(en−1) and ω(e′1) ≤ ω(e′2) ≤ · · · ≤ ω(e′n−1).

Let j be the minimum index in J1, n− 1K such that

j∑
i=1

e′i <

j∑
i=1

ei.

The minimality of j guarantees that

j−1∑
i=1

e′i ≥
j−1∑
i=1

ei.

Since ω(e1) = min{ω(e) | e ∈ E(G)}, we see that j > 1. Now consider the sub-
forests F and F ′ of G determined by the edges e1, e2, . . . , ej−1 and e′1, e

′
2, . . . , e

′
j. Since

|E(F )| = j − 1 < j = |E(F ′)|, Proposition 3 guarantees the existence of an index
k ∈ J1, jK such that e′k /∈ {e1, . . . , ej−1} and the subgraph of G obtained by adding the
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edge e′k to F is a forest, and so contains no cycles. However, the fact that

ω(e′k) ≤ ω(e′j) < ω(e′j) +

( j∑
i=1

ω(ei)−
j∑

i=1

ω(e′i)

)

≤ ω(ej) +

( j−1∑
i=1

ω(ei)−
j−1∑
i=1

ω(e′i)

)
≤ ω(e)

produces a contradiction as in the j-th step of the Kruskal’s algorithm, choosing e′k
would produce a forest with less weight than the one obtained by choosing ej. �

Practice Exercises

Exercise 1. Let G be a simple graph. Prove that G is a tree if and only if G does not
contain any cycle but connecting any two not adjacent vertices will produce a cycle.

Exercise 2. Prove that a graph is a tree if and only if it is connected and has exactly
one spanning tree.

Exercise 3. Let G be a connected simple graph. If the graph that we obtain from G by
removing an edge e is disconnected, then we say that e is a bridge of G. Prove that an
edge e of G is a bridge if and only if it is in every spanning tree of G.
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