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Lecture 24: Cayley’s Theorem

Given a set V consisting of n vertices, one can easily argue that there are 2(n
2) graphs

on the V . Indeed, there are
(
n
2

)
pairs of vertices and, in order to build a graph on V , we

merely have to decide for each of these pair of vertices whether to connected with an
edge or not. If instead of graphs, we want to count the set of trees on V , we can still do
so but the argument is not as simple. In this lecture, we will prove Cayley’s Theorem,
which state that there are nn−2 trees on V . First, we provide a characterization of
trees in terms of paths, which we will use in the proof of Cayley’s theorem.

Here is another characterization of a tree in terms of paths.

Proposition 1. A simple graph is a tree if and only if for any distinct two vertices
there exists exactly one path connecting them.

Proof. Let G be a simple graph.

For the direct implication, assume that G is a tree and suppose, towards a con-
tradiction, that there are two distinct vertices x and y of G and two distinct paths
v1v2 . . . vm and w1w2 . . . wn connecting x and y. Let i be the minimum index such that
vi+1 6= wi+1. Now suppose that j is the minimum index such that j > i and wj appears
in the path v1v2 . . . vm. Suppose that wj = vk. Then vivi+1 . . . vkwj−1 . . . wi+1 is a cycle
in G, which contradicts that G is a tree.

To argue the converse, assume that for any two distinct vertices of G there ex-
ists exactly one path in G connecting them. Now suppose, by way of contradiction,
that G is not a tree. Thus, G must have a cycle v1v2 . . . v`v1 and, therefore, v1v2 and
v1v`v`−1 . . . v2 are two distinct paths from v1 to v2, which is a contradiction. �

We are now in a position to prove the main result of this lecture.

Theorem 2 (Cayley’s Theorem). For each n ∈ N, the number of trees on [n] is nn−2.

Proof. Fix a positive integer n, and let tn denote the number of trees on [n]. Consider
the set Tn consisting of trees on [n] such that each T in Tn has a distinguished pair
of vertices (b, e) ∈ V × V (it may be that b = e). We proceed to show that Tn is in
bijection with the set Fn consisting of all functions f : [n] → [n]. Let f : [n] → [n] be
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a function, and let C be the set of elements in [n] that are part of a cycle under the
action of f , that is,

C := {c ∈ [n] | fm(c) = c for some m ∈ N}.
Write C = {c1, . . . , ck}, where c1 < · · · < ck. Observe that C = {f(c) | c ∈ C}. Now
we produce an element of Tf ∈ Tn as follows. Let [n] be the set of vertices of Tf . Then
create a path with the elements in C by adding, for each j ∈ [k − 1], an edge between
f(ci) and f(ci+1). Then, for every element v ∈ [n] \ C, add an edge from v to f(v).
Finally, let (f(c1), f(ck)) be the distinguished pair of vertices of Tf .

Claim 1. Tf ∈ Tn. Observe that for each v /∈ C, there is exists m ∈ N such that
fm(v) ∈ C as, otherwise, there would be a cycle (under the action of f) disjoint from C.
Thus, any v ∈ V (Tf ) \ C is connected to a vertex of C. This, along with the fact that
the vertices in C form a path in Tf , ensures that Tf is connected. To verify that Tf has
no cycles, first note that any potential cycle in Tf must involve a vertex in C because
otherwise we would have a an f -cycle not contained in C. Then if we had a cycle not
contained in C, there would be a path w1v1v2 . . . v`w` in Tf , where w1, w` ∈ C and
v1, . . . , v` ∈ [n] \ C, and so f(v`) = w`, which implies that f(v`−1) = v`, and so we
would obtain that f(v1) = v2, which generates a conflict with the fact that f(v1) = w1.
Hence every potential cycle of Tf must involve only vertices in C, and the fact that C
is a path allows us to conclude that Tf has no cycles. Thus, Tf is a tree.

every edge of Tf has the form (v, f(v)) for some v ∈ V . Thus, the edges of any
potential cycle of Tf would be edges connecting the vertices in C, but all the edges
connecting any two vertices of C in Tf form a path, which is free of cycles. Hence Tf

is a tree with the distinguished pair (f(c1), f(ck)), which means that Tf ∈ Tn.

Claim 2. The map f 7→ Tf is a bijection. Suppose that T is a tree on [n] with
distinguished pair (b, e). We will construct a map fT : [n] → [n] as follows. Since
T is a tree, there is a unique path P := f1f2 . . . fk from b to e. Let c1, . . . , ck be a
rearrangement of f1, . . . , fk such that c1 < · · · < ck, and define fT (ci) = fi. If a vertex
w ∈ [n] is not part of the path P , set fT (w) = v, where v is the only adjacent vertex
to w in the unique path from w to P (note that there is only one path from w to P
because T does not contain any cycles). It is easy to check that T 7→ fT is the inverse
function of f 7→ Tf .

Therefore |Tn| = nn, which is the number of functions from [n] to [n]. On the other
hand, |Tn| = n2tn as, by definition, elements of Tn are pairs (T, (b, e)), where T is a
tree on [n] and (b, e) ∈ V (T )2. Thus, we conclude that tn = nn−2. �

A rooted tree on a nonempty set V is a pair (T, v), where T is a tree with V (T ) = V
and v ∈ V . A rooted forest on V is a forest with set of vertices V whose connected
components are rooted trees.

Corollary 3. For every n ∈ N, there are (n + 1)n−1 rooted forests on [n], that is,
forests on [n].
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Practice Exercises

Exercise 1. Prove Corollary 3.

Exercise 2. A function f : [n]→ [n] is called acyclic provided that the action of f on
[n] does not generate any cycle of length larger than 1. Prove that there are exactly
(n + 1)n−1 acyclic functions from [n] to [n].
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