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FELIX GOTTI

Lecture 21: Introduction to Graphs and Eulerian Trails

In this lecture, we begin our journey through graph theory.

Definition 1. A simple graph is a pair (V,E), where V is a finite nonempty set and E
is a set consisting of 2-subsets of V . The elements of V are called vertices while the
elements of E are called edges.

In coming lectures, we will also consider general graphs (V,E), where we allow
multiple edges between two given vertices (that is, E is a multiset instead of a set) and
we also allow loops, which are edges from a vertex to itself (that is, E may also contain
1-subsets of V ). We will formally define general graphs and other types of graphs when
we need them.

Let G = (V,E) be a simple graph. It is convenient to set V (G) := V and E(G) := E.
We often denote an edge {v, w} of G simply by vw. It is clear that vw and wv both
denote the same edge. If vw is an edge of G, then we say that the vertices v and w
are adjacent vertices. For any vertex v ∈ V , the degree of v, denoted by deg v, is the
number of edges connected to v, that is,

deg v = |{e ∈ E | v ∈ e}|.

Example 2. For every n ∈ N with n ≥ 3, there is a unique graph Cn satisfying that
deg v = 2 for every v ∈ V . We will formally define what we mean by “unique” in
coming lectures. The graph Cn looks like a polygon of n vertices whose edges are the
sides of the polygon. It is called the cycle on n vertices.

Example 3. For every n ∈ N, there is a unique graph having n vertices and no edges.
In this graph no two vertices are adjacent; it is sometimes called the trivial graph of n
vertices. On the other hand, there is a unique graph having n vertices, where any two
distinct vertices are adjacent. This is called the complete graph on n vertices, and it
is denoted by Kn. Observe that Kn has precisely

(
n
2

)
edges.

The following proposition provides a restriction on the degrees of the vertices of a
graph.

Proposition 4. Every graph contains an even number of vertices of odd degree.
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Proof. Let G = (V,E) be a graph. It suffices to observe that every edge of G (if
some) contributes 1 towards the degree of each of the two vertices it is connected to.
Therefore ∑

v∈V

deg v = 2|E|.

Since the sum of all the degrees of vertices of G is even, there must be an even number
of vertices of G with odd degrees. �

A sequence of edges of the form v1v2, v2v3, . . . , v`v`+1, where v1, . . . , v`+1 ∈ V (G) is
called a walk of length ` and, if vivi+1 6= vjvj+1 for any distinct i, j ∈ [`], then we call
v1v2, v2v3, . . . , v`v`+1 a trail of length `. We often denote a walk/trail v1v2, . . . , v`v`+1

simply by v1v2 . . . v`+1. Clearly, the walks/trails of length 1 are precisely the edges. If
a trail v1v2v2 . . . v`+1 satisfies that v`+1 = v1, then we call it a closed trail or a circuit
(in this case, note that ` ≥ 3). A trail (resp., circuit) that uses all the edges of the
graph is called an Eulerian trail (resp., Eulerian circuit).

If a trail v1v2 . . . v`+1 satisfies that vi 6= vj for any i 6= j, then it is called a path. A
subgraph of G is a graph (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E. A subgraph (V ′, E ′)
of G is called an induced subgraph provided that for any v, w ∈ V ′ with v 6= w, if
vw ∈ E, then vw ∈ E ′. We say that the graph G is connected if any two distinct
vertices of G can be connected by a path, that is, for any v, w ∈ V with v 6= w there
exists a path v1v2 . . . v`+1 such that v1 = v and v`+1 = w. A graph that is not connected
is called disconnected. A connected component C of G is a maximal connected subgraph
of G, that is, C is a connected subgraph of G and if C is a subgraph of a connected
subgraph C ′ of G, then C ′ = C.

Theorem 5. A connected graph G has an Eulerian circuit if and only if every vertex
of G has even degree.

Proof. Let G = (V,E) be a connected graph. If G has only one vertex, the statement
of the theorem follows trivially. So we assume that |V | ≥ 2. Since G is connected,
|E| ≥ 1.

For the direct implication, suppose that C := v1v2, v2v3, . . . , v`v1 is an Eulearian
circuit of G. If we travel through C departing from v1, then we will pass through
every edge of G exactly once. Moreover, if mi is the number of times we pass by vi for
i 6= 1, then deg vi = 2mi as in order to touch any of these vertices we have to travel
through two incident edges we haven’t encountered before. A similar argument shows
that deg v1 = 2m1 if m1 is the number of times we visit v1 after departure, as the last
edge of C that is used to arrive to v1 for last time can be matched with the first edge,
the one we used to depart from v1.

For the converse, suppose that every vertex of G has even degree. We proceed by
induction on the number n of edges. The implication trivially holds when n = 0
(or n = 3). Suppose that |E| = n > 3 and also that the statement of the theorem
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holds for any connected graph with less than n edges. Choose a vertex v1 ∈ V and
start traveling from v1 through consecutive edges of G without repeating any of them
until encountering a vertex from which we cannot continue traveling because all the
edges connected to this vertex have been already used. This will give a trail T :=
v1v2, v2v3, . . . , v`v`+1. If v`+1 ∈ V \ {v1}, then v`+1 would have been connected to an
odd number of edges in T and, given deg v`+1 is even, we would have been able to
continue traveling. Thus, v`+1 = v1. We have proved that G contains a closed trail.
Among all such closed trails, let C be one with maximum number of edges.

We claim that C is an Eulerian circuit. Suppose, by way of contradiction, that this
is not the case. Consider the subgraph G′ := (V,E ′) of G, where E ′ = E \ C. Since C
is not an Eulearian circuit, E ′ is nonempty. Take e ∈ E ′, and let H be the connected
component of G′ containing e. Since H is connected and |E ′| < |E|, it follows from the
induction hypothesis that H has an Eulearian circuit C ′. Observe that one of the edges
of C must be connected to a vertex x in H, as otherwise G would be disconnected. Now
notice that the closed trail that results from concatenating C and C ′ via x has more
edges than C. This contradicts, however, the maximality of C. As a consequence, C
must be an Eulerian circuit. �

Corollary 6. A connected graph has an Eulerian trail if and only if it contains at most
two vertices with odd degrees.

Proof. Exercise. �

Directed Graphs. If we think of the edges of a graph as arrows with certain orien-
tations, then we obtain a more convenient structure to model certain situations. For
instance, we can model a (round-robin) tournaments by considering competitors to be
the vertices and matches to be the arrows, each of them directed towards the winner.
This gives a natural variation of the definition of a graph introduced in the previous
subsection.

Definition 7. A (simple) directed graph is a pair (V,E), where V is a finite set and E
is a subset of V × V satisfying the following two conditions:

(1) (v, v) /∈ E for any v ∈ V and

(2) |{(v, w), (w, v)} ∩ E| ≤ 1 for all v, w ∈ V .

We illustrate a directed graphs in the same way as we do with (undirected) graphs,
but we represent an edge vw by drawing an arrow from v to w. Condition (1) in the
above definition means that there is no arrow directed from a vertex to itself while
condition (2) means that two arrows never create a directed cycle.

Let G = (V,E) be a directed graph. For any v ∈ V , the in-degree of v, denoted by
indeg v, is the number of edges incident and directed to v. In a similar manner, we
define the out-degree of a vertex v and we denote it by outdeg v. We say that G is
balanced provided that indeg v = outdeg v for all v ∈ V .
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We can define walks, (Eulerian) trails, (Eulerian) circuits, and paths for directed
graphs in the same way we did it for (undirected) graphs. We say that a directed
graph G is strongly connected if for any two distinct vertices v and w of G, we can find
a (directed) path from v to w.

For directed graphs, we are also interested in the existence of Eulerian circuits/trails.
For Eulerian circuits, the following result is parallel to that we have proved for undi-
rected graphs.

Theorem 8. A directed graph has an Eulerian circuit if and only if it is a balanced
strongly connected graph.

Proof. The direct implication is obvious as when we travel through an Eulerian circuit
every time we enter a vertex we have to leave, going through two non-used edges.
The reverse implication follows by mimicking the proof of the similar statement for
undirected graphs (see the proof of Theorem 5). �

Practice Exercises

Exercise 1. [1, Exercise 9.17] Is there a simple graph on 6 vertices with ordered degree
sequence 4, 4, 4, 2, 1, 1?

Exercise 2. For a simple graph G = (V,E), we define G∗ to be the graph with set
of vertices V and an edge between v and w if and only if vw /∈ E. For any simple
graph G, prove that either G or G∗ is connected.

Exercise 3. Prove Corollary 6.

Exercise 4. For which n ∈ N, does the complete graph Kn have an Eulerian trail/circuit?

Exercise 5. Can we always add edges to a simple graph to obtain another simple graph
with an Eulerian circuit?
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