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Lecture 2: Mathematical Induction

Mathematical induction is a technique used to prove that a certain property holds
for every positive integer (from one point on).

Principle of Mathematical Induction. For each (positive) integer n, let P (n) be
a statement that depends on n such that the following conditions hold:

(1) P (n0) is true for some (positive) integer n0 and

(2) P (n) implies P (n + 1) for every integer n ≥ n0.

Then P (n) is true for every integer n ≥ n0.

With notation as before, step (1) is called the base case and step (2) is called the
induction step. In the induction step, P (n) is often called the induction hypothesis.
Let us take a look at some scenarios where the principle of mathematical induction is
an effective tool.

Example 1. Let us argue, using mathematical induction, the following formula for
the sum of the squares of the first n positive integers:

(0.1) 12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
.

Let P (n) be the equality in (0.1). For the base case, it suffices to observe that when
n = 1, both sides of (0.1) equal 1, and so P (1) is true. For the induction step, assume
that P (n) is true for certain n ∈ N. Then

12 + 22 + · · ·+ (n + 1)2 =
n(n + 1)(2n + 1)

6
+ (n + 1)2

= (n + 1)
(2n2 + n

6
+

6n + 6

6

)
=

(n + 1)(n + 2)(2n + 3)

6
,

where the first equality holds because P (n) is true. Thus, we have inferred P (n + 1)
from P (n) and so, by virtue of the principle of mathematical induction, we obtain that
P (n) is true for every n ∈ N.
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Example 2. It turns out that 7 divides 52n+1 + 22n+1 for every n ∈ N0. Well, let us
show this by using induction. When n = 0, we see that 52n+1 + 22n+1 = 7, and so it is
divisible by 7. Suppose now that 7 divides 52n+1 + 22n+1 for some nonnegative integer
n. Then 7 divides 52 · 52n+1 + (22 + 21) · 22n+1 = 52(n+1)+1 + 22(n+1)+1 + 21 · 22n+1.
As 21 · 22n+1 is divisible by 7, we obtain that 7 divides 52(n+1)+1 + 22(n+1)+1. Hence it
follows by mathematical induction that 7 divides 52n+1 + 22n+1 for every n ∈ N0.

Example 3. For a positive integer n, consider 3n points in the plane such that no
three of them are collinear. Let us argue that we can form n disjoint triangles whose
vertices are the 3n given points. When n = 1, we can form only one triangle, which
trivially satisfies the desired condition. Suppose now that the statement to be proved
holds for certain n ∈ N, and let us argue that it must also hold for n + 1. To do so,
let P1, . . . , P3(n+1) denote the given points, and let Pi and Pj be two adjacent vertices
of the convex hull of these 3n + 3 points (i.e., the smallest polygon containing such
points). Since no three of the points P1, . . . , P3n+3 are collinear, there is a unique
k ∈ [3n + 3] \ {i, j} minimizing the angle formed by Pi, Pj, and Pk. Let ` be the
line determined by Pj and Pk, and observe that the minimality of the angle ∠PiPjPk

ensures that all the points in the set S := {Pm | 1 ≤ m ≤ 3n + 3} \ {Pi, Pj, Pk} lie
in the half-plane determined by the line ` that does not contain Pi. The induction
hypothesis allows us to form n disjoint triangles whose vertices are the points in S.
Each of these n triangles, being contained in the half-space determined by ` opposite
to Pi, must be disjoint from the triangle 4PiPjPk. Hence we can take 4PiPjPk to be
our (n + 1)-th triangle.

The following variation of the principle of mathematical induction, called strong
induction, is usually convenient.

Strong Induction. For each (positive) integer n, let P (n) be a statement that depends
on n such that the following conditions hold:

(1) P (n0) is true for some (positive) integer n0 and

(2) P (n0), . . . , P (n) implies P (n + 1) for every integer n ≥ n0.

Then P (n) is true for every integer n ≥ n0.

To illustrate an application of the strong mathematical induction principle, let us
prove the (existential part of the) Fundamental Theorem of Arithmetic.

Example 4. We know that every n ∈ N with n ≥ 2 can be factored into primes. Let’s
prove it! When n = 2, it is its own factorization into primes. Now fix n ≥ 2 and
suppose that every positive integer between 2 and n (including both) can be factored
into primes. Let us argue that n + 1 can also be factored into primes. If n + 1 is
prime, then it is its own factorization into primes. Otherwise n + 1 is composite, and
so n + 1 = ab for some positive integers a and b with 2 ≤ a, b ≤ n. By our (strong)
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induction hypothesis, a = p1 · · · pk and b = pk+1 · · · pm for some primes p1, . . . , pm.
Therefore n + 1 factors into primes as n + 1 = p1 · · · pm. Hence we have proved that
every integer greater than 1 factors into primes.

Practice Exercises

Exercise 1. Prove that
n∑

k=1

k3 =
( n∑

k=1

k
)2

=
(n(n + 1)

2

)2
for every n ∈ N.

Exercise 2. [1, Exercise 1.2] At a tennis tournament, every two players play against
each other exactly once. After the tournament is over, each player lists the names
of those he/she defeated and the names of those defeated by someone he/she defeated.
Prove that there is one player who listed the names of everyone else.

Exercise 3. Let r be a nonzero real number such that r+ r−1 is an integer. Show that
rn + r−n is an integer for every n ∈ N.

Exercise 4. Suppose that we divide the plane into regions using straight lines. Show
that we can color each region either blue or red so that no two neighbor regions (i.e.,
two distinct regions having a common side) have the same color.
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