MIT 18.211: COMBINATORIAL ANALYSIS

FELIX GOTTI

LECTURE 17: GENERATING FUNCTIONS III: BACK TO PARTITIONS AND
THE COMPOSITION THEOREM

Back to Partitions. Fix k£ € N and, for every n € N, let p<x(n) be the number
of partition of n which each part having size at most k. Let us find the generating
function of the sequence (p<x(n))nen,-

Proposition 1. The following identity holds:

= 1
(0.1) §p<k(n)$” = E T for every k € N.
(0.2) ip(n)x" = ﬁ ! -,

n=0 el

Proof. For each n € Ny, set R,, :={(c1,...,c,) € Ng | e1+2c2+- - -+ ke, = n}. Observe
that R, is in bijection with the set P<j(n) consisting of all partitions of n with large

parts at most k; indeed, for each (cy,...,c;) € R,, we obtain a partition of n with ¢;

parts of size 7. Since (1 —z*)~! =>">_ 2™ for every i € N, we see that

k
H ! . :H(1+xi+x2i+$3i+"')

i=1
- po1t2eatethe, Z Z 2

€No (e1,...,ck)ERn n€Ng )\EPSk(n)

= |Pek(n)la" =) per(n)a™,
n=0 n=0

where ic; is the degree of the monomial we choose from the i-th factor when multiplying
out in the second equality.

3

We can argue (0.2) in a similar fashion. Let T), be the set of sequences (¢ )reny whose

terms belong to Ny such that ), k¢ = n (note that this implies that only finitely
1
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many terms in the sequence (cg)ken are different from 0). Now 7, is in bijection with
the set P(n) of all partitions of n. Thus,

ﬁ 1 —lxz :ﬁ(l+xi+x2i+x3i+-~) = Z Z g :ip(n)x".
i=1 i=1 n€Ng AeP(n) n=0

O

The Composition Theorem. We have learned before to multiply finitely many gen-
erating functions and interpret combinatorially the coefficients of this product. Now
we will learn how to compose two generating function and how to interpret combinato-
rially the coefficients of the resulting generating function. It turns out that we can do
so imitating the way we compose functions, and there are many benefits in introducing
such a composition.

Definition 2. Let A(x) be the generating function of a sequence (a,),>o satisfying
ap = 0, and let G(z) be the generating function of a sequence (by),>0. Then the
composition of B(z) with A(x) is

B(A(z)) ==Y apAlx)".

n=0

Remark 3. With notation as in the definition, we have imposed the condition ag = 0
because, otherwise, the constant term in the composition would be the sum of infinitely
many terms, which is not convenient.

The following result gives an interpretation to the composition of generating func-
tions.

Theorem 4. For each n € Ny, let a,, be the number of ways to build certain a-structure
on an n-set, and let b, be the number of ways to build a certain B-structure on an n-set.
Assume that ag = 0 and by = 1. Now let f, be the number of ways to split [n] into
nonempty sub-intervals, build an a-structure on each sub-interval, and then build a
B-structure on the set consisting of all such sub-intervals. Assume that fo =1, and let
A(x), B(z), and F(z) denote the generating functions of (an)n>0, (bn)n>0, and (fn)n>o0,
respectively. Then F(x) = B(A(x)).

Proof. For each n € N, set Cx(n) == {(c1,...,cx) € N* | S2F_ ¢; = n}. Note that the
elements of Cy(n) are compositions of n. In addition, observe that for every n € N,

fnZZbk Z Qey =+ Qe -
k=1

(e1,e-yck )ECK(N)
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because Ck(n) is empty when k > n. Therefore

F) =143 fur" =143 <Zbk > )x
n=1 n=1 k=1

(c1,.-5ex)EC(n)

:1+Zbk2( Z %...a%)x":1+ZbkA(x)k
k=1 =1

n=1 > (cy,...,ck)€C(n)

= B(A(x)).
O

Corollary 5. For eachn € Ny, let a,, be the number of ways to build certain a-structure
on an n-set and assume that ag = 0. Let f, be the number of ways to split [n] into
nonempty sub-intervals, and then build an a-structure on each sub-interval. Assume
that fo = 1, and let A(z) and F(x) denote the generating functions of (an)n>0 and
(fu)n>0, respectively. Then

1

We conclude with the following example.

Example 6. A total of n students are in line waiting to know whether their final
evaluation will be either presenting a project or taking a final exam. As there is no time
for every one to present, the instructor splits the line into parts making the students
in each resulting segment a team and then select some of these teams to have a final
team presentation either in generating functions or in graph theory. In how many ways
can the instructor do this? To answer this, we can use Theorem 4 as follows. Once the
instructor splits the line into sub-intervals, he turns each sub-interval into a group in
a, = 1 way (this is the number of a-structures in the terminology of Theorem 4, so we
set ap = 0). Thus, the generating function of (ay),>0 is

oo [e.9] oo

A(z) :Zanaj":Zx”:xe”: 1fx'
n=1 n

n=0 =0

Then the instructor assigns to each of the teams one of the following three categories:
final exam, generating functions presentation, and graph theory presentation. He can
do so in by, = 3% different ways, where k is the number of teams (this is the number
of [-structures in the terminology of Theorem 4). Then the generating function of

(bn)nzg iS

Blx) = Y b = 3 (30)" = < _13x.

n=0
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Now observe that

B(A(z)) = 1 11—z 1 1

—3—x:1—4m:1—4x_x1—4x

11—z

= i 4"x" — i 4rpmtt =1 4 i 42" — i gr—lgn
n=0 n=0 n=1 n=1

=1+ i?) Y
n=1

Finally, it follows from Theorem 4 that the desired number is 3 - 4" 1.

PRACTICE EXERCISES

Exercise 1. Let c(n) be the number of self-conjugate partition of n. Find a formula
for the generating function of (¢(n))n>o that does not involve any summation sign.

Exercise 2. Let ¢, be the number of compositions of n with an odd number of parts in
which each part is at least 2. Find an explicit formula for the generating function of
(Cn)nzo-

Exercise 3. Let ¢, be the number of compositions of n in which each part is odd and
colored blue, green, or red. Find an explicit formula for the generating function of
(Cn)nZO'
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