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Lecture 17: Generating Functions III: Back to Partitions and
The Composition Theorem

Back to Partitions. Fix k ∈ N and, for every n ∈ N, let p≤k(n) be the number
of partition of n which each part having size at most k. Let us find the generating
function of the sequence (p≤k(n))n∈N0 .

Proposition 1. The following identity holds:

(0.1)
∞∑
n=0

p≤k(n)xn =
k∏
i=1

1

1− xi
for every k ∈ N.

(0.2)
∞∑
n=0

p(n)xn =
∞∏
i=1

1

1− xi
.

Proof. For each n ∈ N0, set Rn := {(c1, . . . , ck) ∈ N0 | c1+2c2+· · ·+kck = n}. Observe
that Rn is in bijection with the set P≤k(n) consisting of all partitions of n with large
parts at most k; indeed, for each (c1, . . . , ck) ∈ Rn, we obtain a partition of n with ci
parts of size i. Since (1− xi)−1 =

∑∞
m=0 x

mi for every i ∈ N, we see that

k∏
i=1

1

1− xi
=

k∏
i=1

(1 + xi + x2i + x3i + · · · )

=
∑
n∈N0

∑
(c1,...,ck)∈Rn

xc1+2c2+···+kck =
∑
n∈N0

∑
λ∈P≤k(n)

x|λ|

=
∞∑
n=0

|P≤k(n)|xn =
∞∑
n=0

p≤k(n)xn,

where ici is the degree of the monomial we choose from the i-th factor when multiplying
out in the second equality.

We can argue (0.2) in a similar fashion. Let Tn be the set of sequences (ck)k∈N whose
terms belong to N0 such that

∑
k∈N kck = n (note that this implies that only finitely
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many terms in the sequence (ck)k∈N are different from 0). Now Tn is in bijection with
the set P (n) of all partitions of n. Thus,

∞∏
i=1

1

1− xi
=
∞∏
i=1

(1 + xi + x2i + x3i + · · · ) =
∑
n∈N0

∑
λ∈P (n)

x|λ| =
∞∑
n=0

p(n)xn.

�

The Composition Theorem. We have learned before to multiply finitely many gen-
erating functions and interpret combinatorially the coefficients of this product. Now
we will learn how to compose two generating function and how to interpret combinato-
rially the coefficients of the resulting generating function. It turns out that we can do
so imitating the way we compose functions, and there are many benefits in introducing
such a composition.

Definition 2. Let A(x) be the generating function of a sequence (an)n≥0 satisfying
a0 = 0, and let G(x) be the generating function of a sequence (bn)n≥0. Then the
composition of B(x) with A(x) is

B(A(x)) :=
∞∑
n=0

anA(x)n.

Remark 3. With notation as in the definition, we have imposed the condition a0 = 0
because, otherwise, the constant term in the composition would be the sum of infinitely
many terms, which is not convenient.

The following result gives an interpretation to the composition of generating func-
tions.

Theorem 4. For each n ∈ N0, let an be the number of ways to build certain α-structure
on an n-set, and let bn be the number of ways to build a certain β-structure on an n-set.
Assume that a0 = 0 and b0 = 1. Now let fn be the number of ways to split [n] into
nonempty sub-intervals, build an α-structure on each sub-interval, and then build a
β-structure on the set consisting of all such sub-intervals. Assume that f0 = 1, and let
A(x), B(x), and F (x) denote the generating functions of (an)n≥0, (bn)n≥0, and (fn)n≥0,
respectively. Then F (x) = B(A(x)).

Proof. For each n ∈ N, set Ck(n) := {(c1, . . . , ck) ∈ Nk |
∑k

i=1 ci = n}. Note that the
elements of Ck(n) are compositions of n. In addition, observe that for every n ∈ N,

fn =
∞∑
k=1

bk
∑

(c1,...,ck)∈Ck(n)

ac1 · · · ack .
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because Ck(n) is empty when k > n. Therefore

F (x) = 1 +
∞∑
n=1

fnx
n = 1 +

∞∑
n=1

( ∞∑
k=1

bk
∑

(c1,...,ck)∈C(n)

ac1 · · · ack
)
xn

= 1 +
∞∑
k=1

bk

∞∑
n=1

( ∑
(c1,...,ck)∈C(n)

ac1 · · · ack
)
xn = 1 +

∞∑
k=1

bkA(x)k

= B(A(x)).

�

Corollary 5. For each n ∈ N0, let an be the number of ways to build certain α-structure
on an n-set and assume that a0 = 0. Let fn be the number of ways to split [n] into
nonempty sub-intervals, and then build an α-structure on each sub-interval. Assume
that f0 = 1, and let A(x) and F (x) denote the generating functions of (an)n≥0 and
(fn)n≥0, respectively. Then

F (x) =
1

1− A(x)
.

We conclude with the following example.

Example 6. A total of n students are in line waiting to know whether their final
evaluation will be either presenting a project or taking a final exam. As there is no time
for every one to present, the instructor splits the line into parts making the students
in each resulting segment a team and then select some of these teams to have a final
team presentation either in generating functions or in graph theory. In how many ways
can the instructor do this? To answer this, we can use Theorem 4 as follows. Once the
instructor splits the line into sub-intervals, he turns each sub-interval into a group in
an = 1 way (this is the number of α-structures in the terminology of Theorem 4, so we
set a0 = 0). Thus, the generating function of (an)n≥0 is

A(x) =
∞∑
n=0

anx
n =

∞∑
n=1

xn = x

∞∑
n=0

xn =
x

1− x
.

Then the instructor assigns to each of the teams one of the following three categories:
final exam, generating functions presentation, and graph theory presentation. He can
do so in bk = 3k different ways, where k is the number of teams (this is the number
of β-structures in the terminology of Theorem 4). Then the generating function of
(bn)n≥0 is

B(x) =
∞∑
n=0

bnx
n =

∞∑
n=0

(3x)n =
1

1− 3x
.
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Now observe that

B(A(x)) =
1

1− 3x
1−x

=
1− x
1− 4x

=
1

1− 4x
− x 1

1− 4x

=
∞∑
n=0

4nxn −
∞∑
n=0

4nxn+1 = 1 +
∞∑
n=1

4nxn −
∞∑
n=1

4n−1xn

= 1 +
∞∑
n=1

3 · 4n−1xn.

Finally, it follows from Theorem 4 that the desired number is 3 · 4n−1.

Practice Exercises

Exercise 1. Let c(n) be the number of self-conjugate partition of n. Find a formula
for the generating function of (c(n))n≥0 that does not involve any summation sign.

Exercise 2. Let cn be the number of compositions of n with an odd number of parts in
which each part is at least 2. Find an explicit formula for the generating function of
(cn)n≥0.

Exercise 3. Let cn be the number of compositions of n in which each part is odd and
colored blue, green, or red. Find an explicit formula for the generating function of
(cn)n≥0.
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